Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

госы_1 / 22

.docx
Скачиваний:
101
Добавлен:
17.02.2016
Размер:
44.19 Кб
Скачать
  1. Оптимизация режимов работу УЭЦН.

Задача заключается в том, чтобы для каждой конкретной скважины с учетом ее характеристик подобрать все звенья ЭЦН и 1 глубину спуска насоса. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти воды и газа и их смесей, которые предполагается откачивать из скважины, конструкцию эксплуатационной обсадной колонны глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока потока на входе Для этою строят кривые распределения давления и расходного газосодержания потока вдоль обсадных труб шагами от забоя снизу вверх, начиная от заданного забойного давления, определяемого по уравнению притока для известного дебита (соответственно кривые 1 и 3 на рис V ] 11.18). По кривой 3 оценивают предварительную глубину спуска насоса ( по допустимым значениям объемного газосодержания на приеме насоса

График для определения глубины Lн,погружения ПЭЦН по расходному газосодержанию на входе Bг.вх и давлений на приеме pпр и выкиде pвык из насоса.Ввх=0,05 - 0.25 ) и давление Рвх ( по кривой I). Упомянутые пределы расходного газосодержания на входе в насос установлены по данным испытаний ЭЦН во время откачки газированной жидкости. Если Ввх=0 - 0,05, то газ слабо влияет на работу насоса, если Ввх=0,25 - 0.3 то происходит срыв подачи насоса. По кривым 1 и-2 на глубине спуска насоса определяют перепад давлений 1рсбуемый для получения заданного дебита

Рс=Рвык - Рвх Свойства жидкости и ее вязкость влияют на напорную характеристику насоса. Поэтому далее оцениваем подачу qb и напора Нвс, которые должен иметь подбираемый насос при откачке жидкости ( с учетом влияния на рабочую характеристику насоса свободно! о газа в ГЖС, проходящей через насос, и ее вязкости), чтобы обеспечить подъем заданного количества нефти Q жсу с выбранной глубины lh. Поданным qb и Нвс и паспортным характеристикам подбирают тип насоса, удовлетворяющий условиям 0,65£Qв/Qв опт£1,25, ( где qb.опт - паспортная подача насоса при оптимальном режиме) Нвс£Нпн -DН (где Нпв-напор насоса но паспортной характеристике, соответствующей производительности qbm, DН- поправка , для пересчета Нпв в вероятный напор при работе на воде) DН = 0,92Нв.опт/3,9+0,023Qв.опт ( где Нв.опт - оптимальный напор Qв.опт-оптимальный расход по паспортной характеристике. Выбранный насосный агрегат должен работать в условиях превышения необходимого пускового напора Ноcв над рабочим при откачке ГЖС.

Может оказаться что необходимая характеристика насоса по напору Н не соответствуют (ниже) паспортной характеристике насоса, ближайшею но параметрам. В этом случае напор выбранного насоса регулируют путем повышения противодавления на устье с помощью штуцера или уменьшением ( частичным изъятием) некоторого числа ступеней насоса с заменой их вкладышами. Если используют штуцер, то снижается к.п.д. установки, но при этом регулирование осуществляется проще (без разборки насоса). Также регулировать характеристики ЭЦН можно путем частотного регулирования электродвигателя насоса (частота вращения вала ПЭД пропорциональна частоте тока), в результате чего одновременно изменяются в широком диапазоне и напор и подача насоса. Частотное регулирование позволяет сократить необходимое число типоразмеров ЭЦН. В станциях управления предусмотрены ручной и автоматический режимы работы. В ручном режиме после остановки УЭЦН (например, из-за аварийного отключения электроэнергии) повторно запустить насос в работу можно только вручную. В автоматическом же режиме предусмотрен самозапуск установки через некоторое время после возобновления подачи электроэнергии. Это удобно тем, что для запуска установок не надо ехать по всем скважинам. Однако в зимних условиях на месторождениях Крайнего Севера и Западной Сибири, когда существует опасность замерзания устьевой арматуры и выкидной линии скважины при остановке насоса, автоматический самозапуск нежелателен. Более предпочтительным здесь является ручной запуск установки. При этом оператор приезжает на скважину и включает насос в работу только после пропаривания устьевой арматуры и выкидной линии.

Для достижения поставленной цели сформулированы следующие задачи: 1. Рассмотреть перспективы и экономическую целесообразность применения регулируемого электропривода в структуре УЭЦН.

2. Сформулировать задачу оптимизации установившихся режимов работы УЭЦН с обоснованием критерия, параметров оптимизации и ограничений.

3. Провести системный1 анализ параметров; определяющих показатели работы УЭЦНи выявить наиболее значимые факторы.

4. Разработать математическую модель УЭЦН, учитывающую* основные технологические и технические параметры:

5. Разработать алгоритм; управления,, обеспечивающий оптимизацию установившихся режимов работы УЭЦН;.

6. Оценить, эффективность разработанного алгоритма путем имитационного моделирования и экспериментальных испытаний;на скважине.

УЭЦН

Под подбором УЭЦН понимается определение типоразмера установки, обеспечивающей заданную добычу пластовой жидкости из скважин при оптимальных рабочих показателях (подаче, напоре, мощности, наработке на отказ, КПД и пр.)

При этом максимальное содержание свободного газа у приема насоса не должно превышать 25 % для установок без газосепараторов, максимально допустимое давление в зоне подвески УЭЦН – не более 25 МПа, температура не более 90 0С. Темп набора кривизны скважины в зоне подвески насоса не более 3 мин. на 10 м. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти газа и воды и их смесей, конструкцию эксплуатационной обсадной колонны, глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока на входе.

Производительность УЭЦН регулируется:

1. Методом штуцирования (на устье скважины)

2. При помощи преобразователя частоты:

3. При помощи изменения глубины подвески ЭЦН

4. Замена насосной установки

  1. Факторы коррозионного воздействия на трубопровод.

1. Температура и рН воды

Можно выделить 3 зоны:

1) рН < 4,3 . Скорость коррозии чрезвычайно быстро возрастает с понижением рН. (Сильнокислая среда).

2) 4,3 < рН < 9-10. Скорость коррозии мало зависит от рН.

3) 9-10 < рН < 13. Скорость коррозии убывает с ростом рН и коррозия практически прекращается при рН = 13. (Сильнощелочная среда).

В первой зоне на катоде протекает реакция разряда ионов водорода и образование молекулярного водорода (реакции 2,3); во второй и третьей зоне - идет реакция образования ионов гидроксила ОН-- (реакция 4).

Повышение температуры ускоряет анодные и катодные процессы, так как увеличивает скорость движения ионов, а, следовательно, и скорость коррозии.

Т.е с ростом температуры и кислотности среды скорость коррозии возрастает.

2. Содержание кислорода в воде

Если в воде есть растворенный кислород, то коррозия железа будет идти и в кислой, и в щелочной среде.

3. Парциальное давления СО2

Огромное влияние на разрушение металла труб коррозией оказывает свободная углекислота (СО2), содержащаяся в пластовых водах. Известно, что при одинаковом рН коррозия в углекислотной среде протекает более интенсивно, чем в растворах сильных кислот .

На основании исследований установлено, что системы с РСО2£0,02 МПа считаются коррозионно-неопасными, при 0,2 ³РСО2 >0,02 - возможны средние скорости коррозии, а при РСО2> 0,2 МПа - среда является высококоррозивной.

4. Минерализация воды

Растворенные в воде соли являются электролитами, поэтому увеличение их концентрации до определенного предела повысит электропроводность среды и, следовательно, ускорит процесс коррозии.

Уменьшение скорости коррозии связано с тем, что:

1) уменьшается растворимость газов, СО2 и О2, в воде;

2) возрастает вязкость воды, а, следовательно, затрудняется диффузия, подвод кислорода к поверхности трубы

5. Давление

Повышение давления увеличивает процесс гидролиза солей и увеличивает растворимость СО2. (Для предсказания последствий - см. пп. 3 и 4).

6. Структурная форма потока

Относительные скорости течения фаз (газа и жидкости) в газожидкостных смесях (ГЖС) в сочетании с их физическими свойствами (плотностью, вязкостью, поверхностным натяжением и т.д.) и размерами и положением в пространстве трубопровода определяют формирующиеся в них структуры двухфазных (многофазных) потоков. Можно выделить семь основных структур: пузырьковая, пробковая, расслоенная, волновая, снарядная, кольцевая и дисперсная.

  1. Методика определения технологической эффективности ГТМ.

Оценить технологическую эффективность проведенных ГТМ можно:

1. По характеристикам вытеснения(метод промыслового контроля за разработкой).Характеристики вытеснения-функцианальные зависимости между между накопленными отборами нефти и жидкости., по этим зависимостям можно определить объем дополнттельно добытой нефти в результате проведения ГТМ.

2. По результатам обработки гидродинамических исследований(гидродинамические методы контроля за разработкой до и после ГТМ. В основном, оценка проводится ИЛ, КВД без учета притока и их совместнойинтерпритации. Оценка по ИЛ производится сотоставлением к-та продуктивности до и после ГТМ, оценка по КВД проводится сотоставлением к-та гидропроводности или приведенного радиуса СКВ.

Эффективность ГТМ характеризуют след.параметры:

-дополнительная добыча нефти

-прирост дебита нефти

-снижение текущейобводненности

-сокращение отбора воды

-увеличение МРП

Соседние файлы в папке госы_1