Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛР3_ОСНОВЫ МИКРОАНАЛИЗА.doc
Скачиваний:
40
Добавлен:
18.02.2016
Размер:
1.17 Mб
Скачать

2.2 Приготовление образцов и методы выявления структуры металла при микроанализе

Детали или образцы небольших размеров и веса после подготовки по­верхности можно непосредственно установить на стол микроскопа. Если же размеры детали значительны, необходимо вырезать специальную пробу, называемую темплетом. Выбор места в той поверхности, по которой надо приготовить микрошлиф, зависит от пути исследования и формы детали. Например, при исследовании причин разрушения деталей в процессе экс­плуатации вырезают темплеты (темплет – плоский образец, вырезанный из металлического изделия или заготовки и предназначенный для выявления и изучения на нём макроструктурыизделия.) вблизи места разрушения и в отдалении от него, чтобы можно было определить наличие каких-либо отклонений в строении металла.

Удобными считаются темплеты круглой формы, диаметром 10…12 мм и высотой 8…10 мм или прямоугольной формы с аналогичными размерами. Образцы небольшого сечения монтируются заливкой в специальные оп­равки.

Для выявления микроструктуры требуется высококачественная подго­товка микрошлифов. Приготовление металлографических шлифов обычно состоит из следующих операций: вырезки образца и подготовки поверхно­сти, шлифования, полирования, травления. В некоторых случаях, напри­мер, при изучении неметаллических включений в сталях, исследуют необ­работанную нетравленую поверхность шлифа.

Шлифование начинается с абразивной обработки. Абразивная обработка шлифов заключается в срезании неровностей поверхности абразивными частицами; обработку производят в несколько стадий, постепенно уменьшая зернистость этих частиц. Последние операции абразивной обработки называют обычно полировкой.

В качестве абразивных материалов используют порошки алмаза, ко­рунда, карбида бора, окислов железа, хрома, алюминия, магния. Для гру­бой подготовки шлифов наиболее часто применяют зеленый корунд в виде водостойких шкурок на бумаге.

Шлифование начинают на бумаге с более крупным абразивным зерном (№ 60), затем переходят на шлифование бумагой с более мелким зерном и заканчивают на бумаге № 220…280. Шлифуют образец, слегка прижимая его к вращающемуся кругу (диску). Каждый раз при переходе на более тонкую бумагу образец очищают от наждачной пыли, поворачивая на угол 90, и шли­фуют до тех пор, пока не исчезнут следы предыдущей обработки.

После тонкой шлифовки образец промывают струей воды для удаления частиц абразива и подвергают полировке.

Механическую полировку проводят на специальном полировальном станке, диск которого обтянут фетром или сукном. Диск станка смачивают полировальной жидкостью, состоящей из воды, в которой во взвешенном состоянии находятся частицы полировального порошка (окиси алюминия или окиси хрома). Образец не следует сильно прижимать к диску. Поли­ровка продолжается 8…10 минут, иногда и несколько больше, что зависит от состояния поверхности до полировки, а также свойств сплава и полирующей жид­кости.

Полировку заканчивают после того, как микрошлиф приобретет зер­кальную поверхность. Затем шлиф промывают водой, протирают фильтро­вальной бумагой и рассматривают под микроскопом при увеличении в 100…150 раз. На полированном шлифе хорошо выявляются неметалличе­ские включения, микропоры и трещины, а также фазы, твердость которых значительно отличается от твердости основной структурной составляющей.

Для выявления микроструктуры полированную поверхность подвер­гают травлению. В зависимости от химического состава сплава, способа обработки и целей исследования применяют различные реактивы: слабые спиртовые или водные растворы кислот, щелочей или смеси различных ки­слот.

Травление углеродистой, слаболегированной стали и чугуна произво­дится в 2…4 % спиртовом растворе азотной кислоты.

Шлиф небольших размеров погружается в травитель, налитый в фар­форовую чашку. На массивный шлиф травитель может наноситься на по­верхность при помощи капельницы или пипетки.

Продолжительность травления различна для разных сталей, но обычно достаточно выдержки 5…10 секунд. Признаком протравливания является потускнение поверхности (появление матовости). После травления шлиф промывают водой, про­тирают и просушивают фильтровальной бумагой.

Любой металл или сплав является поликристаллическим телом, то есть состоит из большого числа разноориентированных кристаллитов (зёрен). На границе зёрен даже чистых металлов обычно располагаются примеси. Кроме того, граница зёрен имеет более искаженное кристаллическое строение, чем тело зерна. Под действием травителя, вследствие различия электрохимического потенциала зерна и границы (в чистых металлах) или отдельных структурных составляющих в сплавах, образуются микроскопи­ческие гальванические пары. Границы зёрен, а также фазы с более низким потенциалом будут растворяться быстрее, чем тело зерна или фаза с более высоким потенциалом. Механические смеси дисперсных фаз травятся быстрее, чем однофазные структуры (чистые металлы, твердые растворы), так как в первом случае образуется большое количество гальванических пар. Кроме того, разность потенциалов между разными фазами структуры сложного сплава выше, чем разность потенциалов между телом зерна и его границей у однородного металла, сплава.

В результате неодинакового травления на поверхности шлифа появля­ется микрорельеф. При рассмотрении образца в микроскопе этот микро­рельеф будет создавать сочетание света и тени. По светотеневой картине судят о строении сплава. Структура растравленная сильнее, кажется под микроскопом более темной, так как больше рассеивает свет. Следова­тельно, темные участки свидетельствуют о двух- или многофазном дис­персном строении сплава. Границы зерен чистых металлов и твердых рас­творов будут видны под микроскопом в виде тонкой сетки. Часто зерна од­ного и того же металла травятся по-разному. Это объясняется тем, что в плоскости шлифа находятся зерна с разной кристаллографической ориен­тировкой и, следовательно, обладающие неодинаковой химической актив­ностью.