Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шпоры на экзамен / ПЕЧАТЬ(НАЧАЛО)

.doc
Скачиваний:
315
Добавлен:
28.12.2013
Размер:
1.44 Mб
Скачать

.

1 Предмет и задачи геодезии её связь с другими науками.

ГЕОДЕЗИЯ ("гео" - земля, "де" - разделять) - наука об определении фигуры, размеров и гравитационного поля Земли, а так же об измерениях на её поверхности, с целью получения планов и профилей местности для удовлетворения потребностей народного хоз-ва.

Задачи геодезии подразделяются на научные и научно-технические.

Главной научной задачей геодезии является определение формы и размеров ЗЕМЛИ и ее внешнего гравитационного поля. Так же к числу таких задач относятся: исследования структуры и внутреннего строения Земли, горизонтальных и вертикальных деформаций земной коры; перемещений береговых линий морей и океанов; определение разностей высот уровней морей, движений земных полюсов и др.

Научно-технические и практические задачи геодезии чрезвычайно разнообразны:

  • полевые исследования - полевая геодезия обеспечивает составление проектов сооружений путём выполнения полевых геодезических измерений и вычислительно графических работ;

  • разбивочные работы - перенесение запроектированных сооружений на местность;

  • исполнительные съёмки -чтобы выяснить на сколько отличаются рез-ты исполненного этапа от проекта;

  • наблюдения за деформациями

Все задачи геодезии решаются на основе результатов геодезических измерений, выполняемых при помощи специальных геодезических приборов. Поэтому разработка программ и методов измерений, создание наи­более целесообразных типов геодезических приборов составляют важные научно-технические задачи геодезии.

Геодезия подразделяется на ряд научных и научно-технических дисциплин:

Высшая геодезия, занимается определением фигуры, размеров, гравитационного поля Земли, точным определением координат точки в единой системе.

Топография ("топос" - место, "граф" - пишу), занимается детальным изучением конкретных участков Земли (земной поверхности), путём создания топографических карт на основе съёмочных работ (наземные, воздушные). Изуч. Водных пространств, линии берега и дна – гидрография;съемка больших пространств -фототопография

Спутниковая геодезия, (космическая), в её задачи входит рассмотрение теории и методов использования спутников Земли для решения различных практических задач геодезии.

Картография, это наука о картографическом отображении земной поверхности, о методах создания карт и их использовании.

Инженерная геодезия, изучает методы, технику и организацию геодезических работ, связанных с проведением различных инженерных организаций (строительство, мелиорация, рекультивация).

СВЯЗЬ ГЕОДЕЗИИ С ДРУГИМИ НАУКАМИ. РОЛЬ ГЕОДЕЗИИ - В НАУЧНЫХ ИССЛЕДОВАНИЯХ, НАРОДНОХОЗЯЙСТВЕННОМ СТРОИТЕЛЬСТВЕ И ОБОРОНЕ СТРАНЫ.

Методы решения научных и практических задач геодезии основы­ваются на законах математики и физики. На основе математики произ­водится обработка результатов измерений, позволяющая получать с наибольшей достоверностью значения искомых величин. Задача изучения фигуры Земли и ее гравитационного поля ре­шается на основе законов механики. Сведения из физики, особенно ее разделов - оптики, электро­ники и радиотехники, необходимы для разработки геодезических приборов и правильной их эксплуатации.

Геодезия связана с астрономией, геологией, геофизикой, гео­морфологией, географией и другими науками. Геоморфология ­наука о происхождении и развитии рельефа земной поверхности ­необходима геодезии для правильного изображения форм рельефа на планах и картах. Без знания размеров и формы Земли невозможно создание топографических карт и решение многих практических задач на земной поверхности. Геодезические измерения обеспечивают соблюдение геометри­ческих форм и элементов проекта сооружения в отношении как его расположения на местности, так и внешней и внутренней конфигурации. Даже после окончания строительства производятся специальные геодезические измерения, имеющие целью проверку устойчивости-сооружения и выявление возможных деформаций во времени под действием различных сил и причин. Исключительное значение имеет геодезия для обороны страны. Строительство оборонительных сооружений, стрельба по невидимым целям, использование военной ракетной техники, планирование военных операций и многие другие стороны военного дела требуют геодезических данных, карт и планов.

3 МЕТОД ПРОЕКЦИЙ, ПРИНЯТЫЙ В ГЕОДЕЗИИ. Высоты абсолютные и относитьельные. Балтийская система высот.

Метод проекций при составлении карт и планов заключается в том, что точки физической поверхности Земли А, В и так далее проектируются отвесными линиями на уровенную поверхность (см. рис. 3, а,б). Точки а, b и так далее называются горизонтальными проекциями соответствующих точек физической поверхности. Затем определяется положение этих точек на уровенной поверхности с помощью различных систем координат, и тогда их можно нанести на лист бумаги, т. е. на лист бумаги будет нанесен отрезок ab, который является горизонтальной проекцией отрезка AВ. Но, чтобы по горизонтальной проекции определить действительное значение отрезка AВ, необходимо знать длины аА и bВ (см. рис. 3, б), т.е. расстояния от точек A и В до уровенной поверхности. Эти расстояния называются абсолютными высотами точек местности.

Таким образом, задача составления карт и планов распадается на две:

определение положения горизонтальных проекций точек;

определение высот точек местности.

При проектировании точек на плоскость, а не на уровенную поверхность, появляются искажения: вместо отрезка ab будет отрезок а'b' вместо высот точек местности аА и bВ будут а'А и b (см. рис. 3, а,б).

Итак, длины горизонтальных проекций отрезков и высоты точек будут различны и при проектировании на уровенную поверхность, т.е. при учете кривизны Земли, и при проектировании на плоскость, когда кривизна Земли не учитывается (рис. 4). Эти различия будут наблюдаться в длинах проекций S = t S, в высотах точек h = b'О – bО = b'О – R.

в настоящее время относительная погрешность

Балтийская система высот (БСВ) — принятая в СССР в 1977 году система абсолютных высот, отсчёт которых ведётся от нуля футштока в Кронштадте. От этой отметки отсчитаны высоты опорных геодезических пунктов, которые обозначены на местности разными геодезическими знаками и нанесены на карты.

В настоящее время БСВ используется в России и ряде других стран СНГ.

Абсолютная высота, или абсолютная отметка (в геодезии) — расстояние (в метрах) по вертикали от какой-либо точки на поверхности Земли до среднего уровня поверхности океана, не нарушенного волнением и приливами, или до поверхности геоида.

Абсолютная высота представляет собой третью координату точки, дополняющую широту и долготу; на суше определяется при помощи нивелирования. Абсолютная высота точки, лежащей выше уровня океана, считается положительной, ниже — отрицательной.

При съёмке местности используют географические координаты и абсолютную высоту ближайших опорных геодезических пунктов.

Относительная высотатопографическое превышение какой-либо точки земной поверхности относительно другой точки, отсчитываемое по вертикали, равное разности абсолютных высот этих точек (например, высота горной вершины над уровнем дна ближайшей долины); расстояние по вертикали от указанного исходного уровня до уровня, точки или объекта, принятого за точку.

4. Географические координаты, приемущества и недостатки.

В системе географических координат местоположение проекции точки на сфероиде определяется двумя углами: широтой и долготой (рис. 34).

Рис. 34

Широтой точки  называют угол, образованный отвесной линией в данной точке и плоскостью экватора. Этот угол отсчитывается от плоскости экватора на север и на юг, изменяясь от 0 до 90°. Соответственно широта бывает северная (+) и южная (–).

Долготой точки  называют двугранный угол, заключенный между плоскостью начального (Гринвичского) меридиана, и плоскостью меридиана, проходящего через данную точку. От начального меридиана долготу отсчитывают на восток и запад, от 0 до 180°. Соответственно долгота бывает восточная (+) и западная (–).

Для непосредственного определения географических координат точки на карте используют линии меридианов и параллелей. Меридиан – линия пересечения уровенной поверхности плоскостями, проходящими через ось вращения Земли, т.е. плоскостями долгот.

Параллель – линия пересечения уровенной поверхности плоскостями, перпендикулярными оси вращения Земли, т.е. плоскостями широт.

Система географических координат удобна для изучения всей физической поверхности Земли или значительных ее участков, но неудобна для решения многих инженерных задач.

Географические координаты характеризуються тем, что линейные величины, соответствующие еденицы угловой велечины по параллелям и мередианам, будут различны и зависят от положения линии на земной поверхности. Для решения геодезических задач это создаёт большие трудности и приводит к сложным пересчётам.

Используются в случаях, когда нет необходимости учитывать разницу между названными координатами. Астрономические широту и долготу определяют с помощью специальных приборов относительно уровенной поверхности и направления силы тяжести. При проецировании астрономических координат на поверхность земного рефе­ренц-эллипсоида получают геодезические широту и долготу.

6. Геодезические измерения. Единицы измерений.

Под измерениями понимают процесс сравнения какой-либо величины с другой однородной величиной, принимаемой за единицу. При всем многообразии геодезических измерений все они сводятся в основном к трем видам:

линейные — определяются расстояния между заданными точками;

угловые — определяются значения горизонтальных и вертикальных углов между направлениями на заданные точки;

высотные (нивелирование) — определяются разности высот отдельных точек.

За единицу линейных и высотных измерений (расстояний, высот и превышений) в геодезии принят метр, представляющий собой длину жезла - эталона, изготовленного из платино-иридиевого сплава в 1889 г. и хранящегося в Международном бюро мер и весов в Париже. Копия №28 этого жезла находится в НИИ метрологии им. Д. И. Менделеева в Санкт-Петербурге. В качестве эталона более высокой точности в настоящее время служит метр, определенный как длина пути, пройденного светом за 1/299792548 доли секунды.

Единицей для измерений углов (горизонтальных и вертикаль­ных) служит градус, представляющий 1/90 прямого угла или 1/360 окружности. Градус содержит 60 угл. мин, минута делится на 60 угл. с. В некоторых странах применяют градовую систему, в которой 1 град составляет 1/400 окружности, градовая минута — 1/100 град, а градовая секунда — 1/100 град мин.

В современных автоматизированных угломерных приборах единицей измерений служит гон, равный 1 град или 54 угл. мин; тысячная его доля, равная 3,24 угл. с, называется миллигон.

Измерения называют прямыми, если их выполняют с помощью приборов, позволяющих непосредственно сравнить измеряемую величину с величиной, принятой за единицу, и косвенными, когда искомую величину получают путем вычислений на основе результатов прямых измерений. Так, угол в треугольнике можно не посредственно измерить угломерным прибором (прямое измерение) или вычислить по результатам измерения трех сторон треугольника (косвенное измерение).

Необходимыми условиями любого измерения являются: объект измерения; субъект измерения — лицо, производящее измерение; мерный прибор, которым выполняют измерения; метод измерения — совокупность правил и действий, определяющих процесс измерения; внешняя среда, в которой выполняют измерения.

Обозначенные на местности точки, от которых выполняют геодезические измерения, называются исходными. Точки, положение которых на местности необходимо определить, называют определяемыми.

Исходные и определяемые точки могут располагаться в горизонтальной плоскости в плане (плановые точки) и вертикаль ной — по высоте (высотные точки).

Измерение - процесс сравнения физической величины с единицей меры, другой однородной величиной. В инженерной геодезии за единицы измерений приняты метр, градус, минута, радиан.

Измерения различают:

Прямые (величина берется непосредственно как результат измерения) и косвенные (находится с помощью вычислений по результатам иззмерений)

Необходимые (дают одно значение величины) и избыточные (для получения более надежного результата)

Равноточные – это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Все остальные измерения относятся к неравноточным.

7. Зональная система плоских прямоугольных координат (проекция Гаусса – Крюгера)

Зональная система плоских прямоугольных координат предложена Гауссом в 1828 г., удобные для практических расчетов формулы разработаны Крюгером к 1912 г., в СССР принята с 1928 г.

Поверхность земного сфероида делят меридианами на зоны в 6° по долготе, начиная от начального меридиана, и нумеруют по направлению к востоку, всего зон 60. Далее получают плоские изображения каждой зоны, для чего мысленно помещают сфероид внутрь цилиндра так, чтобы осевой меридиан зоны касался поверхности цилиндра. Из центра сфероида зону проектируют на поверхность цилиндра – при этом углы сферы будут изображены без искажения, поэтому данную проекцию называют равноугольной, поперечно-цилиндрической. Изображение на поверхности цилиндра затем можно развернуть на плоскость.

В поперечно-цилиндрической проекции искажения будут в длинах линий: зоны на цилиндре получаются более широкими, чем на шаре. Не будет никаких искажений осевого меридиана – он касается поверхности цилиндра, но чем дальше расположены отрезки от осевого меридиана, тем больше искажений в длинах линий.

Ширина зоны на экваторе около 670 км, т.е. крайние точки зоны удалены от осевого меридиана примерно на 335 км. Искажения в длинах линий на экваторе достигают: при удалении от осевого меридиана на 100 км –1/8000, на 300 км – 1/800. Для широт территории РФ наибольшие искажения могут достигать примерно 1/1000

Наличие искажений в общем случае определяет возможное непостоянство масштаба в отдельных частях карты, и поэтому существуют понятия главного масштаба и частных масштабов. Главный – масштаб того глобуса, который изображают при составлении карты, частные масштабы относятся к различным частям карты.

Система географических координат удобна для изучения всей физической поверхности Земли или значительных ее участков, но неудобна для решения многих инженерных задач. Проекция Гаусса в географическом отношении не имеет практического значения, так как дает изображение земной поверхности с разрывами. Но ее ценность в том, что она в силу малых искажений сближает карту с планом и позволяет назначать систему плоских прямоугольных координат в каждой зоне, что удобно при решении инженерных задач.

В проекции Гаусса за начало координат в каждой зоне принимают точку пересечения осевого меридиана с линией экватора, которые образуют прямой угол. Они и есть в данном случае оси координат. Осевой меридиан служит осью абсцисс x, а линия экватора – осью ординат у. Положительным направлением абсцисс считается направление от экватора к северу, положительным направлением ординат – на восток. В математике применяется левая система координат (нумерация четвертей против движения часовой стрелки), в геодезии – правая система. Но так как наименования осей координат тоже противоположны, знаки координат точек, расположенных в одноименных четвертях, совпадают, что позволяет применять формулы тригонометрии без всяких изменений и в данной системе.

5. Влияние кривизны земли на горизонтальные и вертикальные расстояния.

В современной геодезии допустимая относительная ошибка – 1/1000000, т.е 1 см – 10 км. S – искажение горизонтальной проекции: S = d– S = Rtg – R = R(tg  ). Но, так как S мало по сравнению с радиусом Земли R, то для малого угла можно принять . Тогда

.

Ho и тогда . Соответственно и

км (с округлением до 1 км)

Таким образом участок поверхности земного сфероида радиусом 10 км может быть ищображен на плоскости и при этом величина искажения не превысит допустимой погрешности

Искажение в высотах.

р=CD-CD1=R*scα-R=R*(scα-1)

scα=1+α2/2+5α4/24…

p=R*(1+α2/2-1)=R*α2/2=S2/2R

d(м) 100 200 300 . 1000

к(см) 0,1 0.3 0,7 . 7,8

кривизна земли не учитывается при опред-нии высот до 1 км.

14. ОРИЕНТИРОВАНИЕ. ИСТИННЫЕ (географические) АЗИМУТЫ, ПРЯМОЙ И ОБРАТНЫЙ АЗИМУТЫ, СБЛИЖЕНИЕ МЕРЕДИАНОВ. РУМБЫ.

Для ориентирования карты достаточно ориентировать линию, принадлежащую данной карте.

Для того чтобы ориентировать линию, надо знать угол ориентирования, т.е. тот угол, который данная линия составляет с направлением, принятым за начальное.

В географической системе за начальное направление принято северное направление географического меридиана (рис. 40, 41) и углами ориентирования являются географический азимут A и географический румб rг.

Географический азимут – угол, отсчитываемый от северного направления географического меридиана по ходу часовой стрелки до ориентируемой линии. Изменяется от 0 до 360°.

Но географические меридианы в разных точках сфероида не параллельны между собой, поэтому азимут одной и той же линии (см. рис. 40, линия 1–2) в различных ее точках будет различен (азимут A(A) в точке А не равен азимуту A(B) в точке В. Это различие определяет угол , который называется сближением меридианов (угол между полуденними линиями двух точек, лежащих на разных мередианах):  = А(В) А(А) - Линия , касательная к дуге мередиана в данной точке, называеться полуденной линией. Сближение положительное когда - В, и отрицательное когда – З.

В геодезии пользуются терминами: прямое направление линии и обратное. Так, если исходное направление линии – направление АВ (см. рис. 41), то обратное направление – направление ВА. Соответственно азимут линии АВ будет прямым, линии ВА – обратным (т.е. А(А), А(В) азимуты прямые, А(В)образимут обратный). Зная азимут прямой в точке А(А) и сближение меридианов (В), можно вычислить азимут обратный в точке В. В данном случае А(В)обр = А(А) + 180 + (В).

Азимут прямой – азимут определённый в начале линии, а обратный в конце.

Расчет показал, что для средних широт при расстояниях между точками менее 0,5 км сближение меридианов менее 30. В строительной практике такая погрешность (30) в определении направлений считается допустимой, и тогда при l < 0,5 км в общем случае Аобр = Апр 180°.

Географический румб острый угол между ориентируемой линией и ближайшим направлением географического меридиана (северным или южным). Румб может иметь значения от 0 до 90°.

2. ФОРМА И РАЗМЕРЫ ЗЕМЛИ. Геоид, референц-элипсоид, шар. Общая форма Земли как материального тела определя­ется действием внутренних и внешних сил на ее частицы, т.е. поверхность Земли образует фигуру неправильной, сложной формы. При определении фигуры и размеров Земли в геодезии вводится понятие уровенных поверхностей. Основная уровенная поверхность – это поверхность воды в океанах и собирающимися с ними морями, в состоянии полного покоя и равновесия, мысленно продолженная под материками так, чтобы она пересекала направление отвесной линии под прямым углом (90'). Фигура Земли, ограниченная основной уровенной поверхностью, называется – геоид. Вследствие особой сложности, геометрической направленности геоида его заменяют другой фигурой – эллипсоидом, который получается от вращения эллипса вокруг его малой оси PP1. (a=6378245м; b=6356863м; сжатие =(a-b)/a=1/298,3; R=6371,11км).

Земной эллипсоид ориентируют в теле Земли так, чтобы его поверхность в наибольшей мере соответствовала поверхности геоида. Эллипсоид с определенными размерами и определенным образом ориентированный в теле Земли называется референц-эллипсоидом (сфероидом).

Наибольшие отклонения геоида от сфероида составляют 100–150 м. В тех случаях, когда при решении практических задач фигуру Земли принимают за шар, радиус шара, равновеликого по объему эллипсоиду Красовского, составляет R = 6 371 110 м = 6371,11 км.

При решении практических задач в качестве типичной фигуры Земли принимают сфероид или шар, а для небольших участков кривизну Земли вообще не учитывают. Такие отступления целесообразны, так как упрощается проведение геодезических работ.

8. МАСШТАБЫ ЧИСЛЕННЫЙ, ЛИНЕЙНый И ПОПЕРЕЧНЫЙ ПРЕДЕЛЬНАЯ ТОЧНОСТЬ МАСШТАБОВ. Масштаб – степень уменьшения горизонтального проложенных линий на местности, при изображении их на планах или картах.

Выражается в виде дроби: 1:N, где N=100; N=200; N=500; N=1000; N=2500. Масштабы бывают: численные и графические (линейные, поперечные).

Отношение длины линии на плане к длине горизонтального проложения этой линии на местности называется численным масштабом топографического плана. безразмерная правильная дробь М=1/m

Линейный масштаб используют для измерения с небольшой точностью длин отрезков на плане. Он представляет собой прямую линию, разделённую на равные отрезки. Длина одного отрезка называется основанием масштаба. Линейным масштабом пользуются следующим образом: откладывают на линейном масштабе замеренную длину т.о., чтобы правая ножка циркуля (измерителя) была на к-либо делении правее 0, а левая ножка обязательно заходила за 0; считают число целых делений основания масштаба и число десятых делений между правой и левой ножками. Наим цена деления 2 мм, точность 1мм

Поперечный масштаб применяют для более точных измерений длин линий на планах. Поперечным масштабом пользуются следующим образом: откладывают на нижней линии поперечного масштаба замер длины т.о., чтобы один конец (правый) был на целом делении ОМ, а левый заходил за 0. Если левая ножка попадает между десятыми делениями левого отрезка (от 0), то поднимаем обе ножки измерителя вверх, пока левая ножка не попадёт на пересечение к-либо трансвенсали и к-либо горизонтальной линии. При этом правая ножка измерителя должна находиться на этой же горизонтальной линии. Наименьшая ЦД=0,2мм, а точность 0,1

Точность масштаба топографического плана – длина горизонтального проложения линии местности, соответствующая на плане отрезку в 0,1мм. Так, для плана масштаба 1/5000 точность масштаба будет 0,1*5000=0,5м.

Так, если М 1:2000, то точность будет: , но dпл = 0,1 мм, тогда dместн = 2000  0,1 мм = 200 мм = 0,2 м. Следовательно, в этом масштабе (1:2000) предельная графическая точность при нанесении линий на план будет характеризоваться величиной 0,2 м, хотя линии на местности могли измеряться с более высокой точностью.

ИЗМЕРЕНИЕ ПРЯМЫХ, ЛОМАННЫХ И КРИВЫХ ЛИНИЙ НА ПЛАНАХ И КАРТАХ.

Измерение прямолинейных отрезков между точками производят с графической погрешностью 0,1 мм, расхождение между повторными измерениями данного отрезка не должно превосходить 0,3 мм.

Измерение ломаных отрезков производят по частям или путем их последовательного спрямления (способ наращивания).

Для контроля измерения проводят в обратном направлении.

Для измерения криволинейных отрезков применяются специальные приборы – курвиметр, циркуль-измеритель с постоянным раствором, а также способ наращивания.

Курвиметр состоит из колесика, связанного со стрелкой, которая указывает на циферблате длину линии в сантиметрах. Удерживая курвиметр перпендикулярно к плоскости карты, ведут его колесико по измеряемому отрезку.

Перед применением курвиметра необходимо определить цену его деления. Для этого выбирают отрезок известной длины и устанавливают, какое число делений курвиметра п будет соответствовать этому отрезку. Тогда цена деления курвиметра.

Перед началом измерения отсчет на циферблате курвиметра выводят на 0.

Применение циркуля-измерителя с постоянным раствором сводится к измерению малых хорд. Берут раствор циркуля порядка двух-пяти миллиметров и определяют по отрезку с известной длиной dизв длину отрезка, взятого в раствор циркуля:,

где п – число перестановок циркуля. После определения dраст измеряют длину криволинейного отрезка. Для измерений следует пользоваться циркулем с регулирующим винтом, dраст следует брать меньше при большей извилистости измеряемой линии.

Применение способа наращивания при измерении криволинейных отрезков такое же, как и при измерении ломаных отрезков (измеряют малые хорды, на которые делится криволинейный отрезок).

Практика измерений криволинейных отрезков показывает, что наиболее точным является применение циркуля-измерителя с постоянным раствором.

15. ДИРЕКЦИОННЫЕ УГЛЫ, ПРЯМЫЕ И ОБРАТНЫЕ, РУМБЫ. СВЯЗЬ ДИРЕКЦИОННЫХ УГЛОВ И ИСТИННЫХ АЗИМУТОВ.

Дирекционный угол – угол, отсчитываемый от северного направления осевого меридиана или линии, ему параллельной, по ходу часовой стрелки до ориентируемой линии. Изменяется от 0 до 360°.

Дирекционный угол в разных точках прямой – величина постоянная, и соответственно обратный дирекционный угол равен: обр = пр + 180°.

Зная географический азимут, можно вычислить дирекционный угол, и наоборот. Если считать для точек, расположенных восточнее осевого меридиана, сближение  со знаком плюс ,а западнее – со знаком минус, то во всех случаях А = + .

Румб – это острый горизонтальный угол, отсчитываемый от ближайшего отрицательного или положительного направления линии параллельной оси абсцисс. Обратный румб отличается от прямого только противоположной стороной света

решения особое значение приобретает наглядность в отношении физической поверхности Земли по какому-либо направлению. Например, при проектировании линейных сооружений (дорог, каналов и т.д.) необходимы: детальная оценка крутизны скатов на отдельных участках трассы, ясное представление о почвенно-грунтовых и гидрологических условиях местности, по которой проходит трасса. Такую наглядность, позволяющую принимать обоснованные инженерные решения, обеспечивают профили.

Профиль – изображение на плоскости вертикального разреза земной поверхности по заданному направлению. Чтобы неровности земной поверхности были более заметными, вертикальный масштаб следует выбирать крупнее горизонтального (обычно в 10–20 раз). Таким образом, как правило, профиль является не подобным, а искаженным изображением вертикального разреза земной поверхности.Масштабы планов – 1:5000 – 1:200

11. УСЛОВНЫЕ ЗНАКИ ПЛАНОВ И КАРТ. Масштабные, внемасштабныеи пояснительные условные знаки.

Объекты местности изображают на планах и картах условными знаками. Но одни объекты имеют значительные размеры (например, озеро, лес и т. д.), другие объекты малы (колодец, мост и т. д.). Объекты, размеры которых значительны, отображают в масштабе данной карты с сохранением подобия контуров, для малых объектов такое отображение невозможно. Кроме того, и большие и малые объекты необходимо сопроводить определенными характеристиками (для древостоя указать его среднюю высоту, для моста – грузоподъемность и т. д.). В связи с этим все условные знаки делят на три группы: масштабные (контурные), внемасштабные и пояснительные.

Масштабные (рис. 8) служат для изображения объектов в масштабе карты или плана. Контур такого объекта наносится точечным пунктиром или тонкой сплошной линией и заполняется значками, отличающими его от других объектов.

Внемасштабные условные знаки (рис. 9) применяют для изображения объектов, не выражающихся в данном масштабе. По ним невозможно судить о размерах объекта, но определенная точка знака соответствует положению объекта на местности. Такие знаки используют и для изображения объектов линейного характера (дороги, линии связи и т.д.). Они позволяют передать точное местоположение объектов по их оси.

Промежуточное положение между масштабными и внемасштабными занимают линейные условные знаки, являющиеся по длине масштабными, а по ширине внемасштабными.

Пояснительные условные знаки (рис. 10), представленные значком, числом, надписью или их совокупностью, служат для дополнительной характеристики объектов.

Условные знаки применительно к различным масштабам приводятся в специальных каталогах, издаваемых Главным управлением геодезии и картографии (ГУГК), и являются обязательными для всех учреждений. Точное воспроизведение условных знаков – одно из основных требований при вычерчивании плана

10.РАЗГРАФКА И НОМЕНКЛАТУРА ТОПОГРАФИЧЕСКИХ ПЛАНОВ И КАРТ.

Для решения различных вопросов практики требуются карты и планы различных масштабов. Для удобства пользования многолистными картами вся земная поверхность делится на части меридианами и параллелями в единой системе. Система условного обозначения (буквами и цифрами) листов, планов и карт различных масштабов называется – номенклатурой карт. Основой номенклатуры составляет карта в масштабе 1:1000000. Для листа такой карты принят участок земной поверхности в 4° по широте (ряды 22) и 6° по долготе (колонны 60). Каждая из полос, ограниченная меридианами, называется колоннами. Они нумеруются от восточного меридиана цифрами от 1 до 60°. Протяжённость колонны по долготе = 6°. Каждый пояс ограничивается параллелями и обозначается заглавными латинскими буквами от A до V, начиная от экватора к северному полюсу. Чтобы устранить неудобства, возникающие на стыке карт двух зон, на рамках карт наносят дополнительную сетку, являющуюся продолжением сетки соседней зоны. Оцифровка дополнительной сетки наносится за внешней рамкой карты.

Разграфка листов карты масштаба 1:500 000 производится путем деления средним меридианом и средней параллелью листа карты масштаба 1:1 000 000 на четыре части, которые обозначаются прописными буквами русского алфавита. Номенклатура листов карты масштаба 1:500 000 складывается из номенклатуры листа карты масштаба 1:1 000 000, частью которого он является, и соответствующей буквы.

Разграфка листов карт масштабов 1:200 000 и 1:100 000 производится путем деления каждого листа карты масштаба 1:1 000 000 меридианами и параллелями соответственно на 36 и 144 части. Листы карт масштаба 1:200 000 нумеруются римскими цифрами, масштаба 1:100 000 – арабскими цифрами по рядам с запада на восток.

Номенклатура листов карт указанных масштабов состоит из номенклатуры соответствующего миллионного листа и собственного номера, который у листов карт масштабов 1:200 000 и 1:100 000 указывается справа от номенклатуры миллионного листа. Например, листы карт масштабов 1:200 000 и 1:100 000 (заштрихованные на рис. 47), имеют номенклатуры соответственно N-37-VI и N-37-134. Листы карты масштаба 1:50 000 получают путем деления листов карты масштаба 1:100 000 на четыре части (см. рис. 47), обозначаемые прописными буквами русского алфавита. Размеры листа по широте составляют 10, по долготе – 15. Номенклатура этих листов образуется путем присоединения к номенклатуре листа масштаба 1:100 000 соответствующей буквы, например N-37-134-Б.

Листы карты масштаба 1:25 000 получают делением листов карты масштаба 1:50 000 на четыре части (рис. 48), каждая из которых обозначается строчными буквами русского алфавита. Размеры этих листов по широте составляют 5, по долготе – 730, а номенклатура дополняется соответствующей буквой: N-37-134-Б-в.

Лист карты масштаба 1:25 000 делится на четыре листа карты масштаба 1:10 000, каждый из которых имеет размеры по широте 230, по долготе 345. Они обозначаются арабскими цифрами, которые указываются после номенклатуры листа карты масштаба 1:25 000, частью которого они являются, например N-37-134-Б-в-2.

Разграфка листов карты масштаба 1:5000 производится путем деления листов карты масштаба 1:100 000 на 256 частей (16 рядов по широте и долготе). Листы нумеруют арабскими цифрами по рядам с запада на восток. Размер каждого листа по широте 115, по долготе 153,5. Номенклатура этих листов образуется путем присоединения к номенклатуре листа карты масштаба 1:100 000 соответствующего номера в скобках, например: N-37-134-(16).

Листы карты масштаба 1:2000 получают путем деления листов карты масштаба 1:5000 на девять частей и обозначают строчными буквами русского алфавита, например N-37-134-(16-ж). Размер каждого листа по широте 25, по долготе 37,5.

14. ОРИЕНТИРОВАНИЕ. ИСТИННЫЕ (географические) АЗИМУТЫ, ПРЯМОЙ И ОБРАТНЫЙ АЗИМУТЫ, СБЛИЖЕНИЕ МЕРЕДИАНОВ. РУМБЫ.

Для ориентирования карты достаточно ориентировать линию, принадлежащую данной карте.

Для того чтобы ориентировать линию, надо знать угол ориентирования, т.е. тот угол, который данная линия составляет с направлением, принятым за начальное.

В географической системе за начальное направление принято северное направление географического меридиана (рис. 40, 41) и углами ориентирования являются географический азимут A и географический румб rг.

Географический азимут – угол, отсчитываемый от северного направления географического меридиана по ходу часовой стрелки до ориентируемой линии. Изменяется от 0 до 360°.

Но географические меридианы в разных точках сфероида не параллельны между собой, поэтому азимут одной и той же линии (см. рис. 40, линия 1–2) в различных ее точках будет различен (азимут A(A) в точке А не равен азимуту A(B) в точке В. Это различие определяет угол , который называется сближением меридианов (угол между полуденними линиями двух точек, лежащих на разных мередианах):  = А(В) А(А) - Линия , касательная к дуге мередиана в данной точке, называеться полуденной линией. Сближение положительное когда - В, и отрицательное когда – З.

В геодезии пользуются терминами: прямое направление линии и обратное. Так, если исходное направление линии – направление АВ (см. рис. 41), то обратное направление – направление ВА. Соответственно азимут линии АВ будет прямым, линии ВА – обратным (т.е. А(А), А(В) азимуты прямые, А(В)образимут обратный). Зная азимут прямой в точке А(А) и сближение меридианов (В), можно вычислить азимут обратный в точке В. В данном случае А(В)обр = А(А) + 180 + (В).

Азимут прямой – азимут определённый в начале линии, а обратный в конце.

Расчет показал, что для средних широт при расстояниях между точками менее 0,5 км сближение меридианов менее 30. В строительной практике такая погрешность (30) в определении направлений считается допустимой, и тогда при l < 0,5 км в общем случае Аобр = Апр 180°.

Географический румб острый угол между ориентируемой линией и ближайшим направлением географического меридиана (северным или южным). Румб может иметь значения от 0 до 90°.

12.ИЗМЕРЕНИЯ ПЛОЩАДЕЙ ПО КАРТАМ И ПЛАНАМ ПАЛЕТКОЙ,ГРАФИЧЕСКИМ, АНАЛИТИЧЕСКИМ И МЕХАНИЧЕСКИМ СПСОБАМИ, ТОЧНОСТЬ ИЗМЕРЕНИЙ.

Границы участков, площади которых необходимо определить на плане или карте, могут иметь прямолинейное или произвольное очертание.

При прямолинейных очертаниях определение площади возможно двумя способами: графическим (по расчетным формулам конкретных геометрических фигур) и аналитическим (по координатам вершин углов многоугольника).

В первом случае участок разбивают преимущественно на треугольники, реже на прямоугольники и трапеции (рис. 12). Измеряют линейные элементы (стороны, высоты) и по формулам геометрии вычисляют площади каждой фигуры. Для контроля площади вычисляют дважды, меняя измеряемые элементы. Например, в треугольнике 1–2–3 в одном случае измеряют основание 1–2 и высоту 3–5, в другом – основание 1–3 и высоту 2–4. Расхождение между двумя значениями площадей не должно превосходить [га], где

m – знаменатель численного масштаба. Точность определения площадей примерно 1/100 измеряемой величины.

Вычисление площади аналитическим способом, по координатам вершин углов многоугольника, обеспечивает более высокую точность (до 1/1000 измеряемой величины).

Расчетная формула для определения площади многоугольника (в простейшем случае треугольника – рис. 13):

Произведя соответствующие алгебраические действия и преобразования, получим расчетные формулы:

,

где i = 1, 2, 3 ... – номера вершин полигона; i+1 – номер последующей вершины; i-1 – номер предыдущей вершины.

При произвольных очертаниях границ участков определение площади возможно также двумя способами: графическим (палетки) и механическим (планиметры).

Для определения площадей небольших участков с криволинейными контурами применяют палетки – квадратные (рис. 14) и параллельные (рис. 15).

Палетки изготавливают на прозрачном материале, расстояние между линиями 1–2 мм. Квадратная палетка применяется для малых участков, имеющих площадь на плане до 2 см2. Подсчитывают число полных клеток, доли неполных клеток учитывают на глаз. Точность измерения примерно 1/50.

Параллельную палетку применяют для участков, площадь которых на плане до 10 см2. Палетку на измеряемый контур накладывают так, чтобы точки 1 и 2 расположились между параллельными линиями. Тогда отрезки 3–4, 5–6 и так далее можно считать полусуммой оснований соответствующих трапеций. Найдя суммарную длину этих отрезков и умножив ее на высоту трапеции (т.е. на величину расстояния между параллельными линиями), получим площадь контура.

Механический - при механическом способе применяют планиметры различных конструкций, чаще всего - полярный планиметр. Он состоит из трех основных частей: двух рычагов – полюсного и обводного и каретки со счетным механизмом.

17. Магнитные компасы и буссоли. Устройство, применение.

Буссоль прибор для определения магнитных азимутов и румбов (в виде круглой коробки, в центре которой на шпиле насажена маленькая игла). Отсчёт снимается с конца магнитной стрелки. Применяются азимутальные и румбические буссоли. В азимутальных циферблат от 0° до 360°, в румбических четыре от 0° до 90°.

Ориентирование карты возможно 2 способами:

  1. Положив буссоль (компас) к линии географического меридиана карты (боковой рамки карты) поворачиваем карту до тех пор (вместе с буссолью), пока по северному концу стрелки не будет установлен отсчёт, равный магнитному склонению дэльта ().

  2. Положив буссоль (компас) к линии километровой сетки (т.е. к линии параллельной линии осевого меридиана зоны) так, чтобы стрелка была ей параллельна, а отсчёт по кольцу буссоли равнялся 0 (так, чтобы нулевой диаметр градусного кольца был параллелен этой линии). Поворачиваем карту вместе с буссолью до получения отсчёта значения поправки: П=-.

  3. Неофициальный чтобы сореинтировать карту, достаточно сориентировать одну линию ей принадлежащую.

Компас

Металлическая коробка, покрытая сверху стеклом, внутри которой вращаеться на шпиле магнитная стрелка. Под стеклом укреплено кольцо с градусными делениями, по которы можно приблежонно определить магнитные азимуты или румбы направлений на местности. Для работы с компасом ночью его стрелку, градус. деления покрываются светящимся составом. Для предохранения шпиля , стрелку после работы прижимют к стеклу при помощи арретира.

16 МАГНИТНЫЕ АЗИМУТЫ И РУМБЫ, СВЯЗЬ ИСТИННОГО И МАГНИТНОГО АЗИМУТОВ, СКЛОНЕНИЕ МАГНИТНОЙ СТРЕЛКИ.

В тех случаях, когда необходимо «перейти от карты к местности», и наоборот, во многих случаях ориентируются относительно магнитного меридиана, направление которого определяется магнитной стрелкой.

При ориентировании относительно магнитного меридиана за начальное направление принято северное направление магнитного меридиана и углами ориентирования являются магнитный азимут Ат и магнитный румб rm.

Магнитный азимут – угол, отсчитываемый от северного направления магнитного меридиана, по ходу часовой стрелки до ориентируемой линии.

Магнитный меридиан, как правило, не совпадает с географическим. Угол, образованный ими, называется магнитным склонением . Приписывая восточному склонению знак плюс, а западному минус, во всех случаях получаем: А = Ат + .

Магнитное склонение – величина не постоянная, известны его суточные, годовые и вековые изменения. В частности, суточное изменение в средней полосе территории РФ достигает 15 и больше, следовательно, ориентирование линий относительно магнитного меридиана возможно в тех случаях, когда не требуется высокой точности. Есть районы, где вообще нельзя пользоваться показаниями магнитной стрелки. Уточненную величину магнитного склонения можно узнать на метеостанциях и по специальным картам, его среднее значение приводится на топографических картах.

Магнитный румб – острый угол между ориентируемой линией и ближайшим направлением магнитного меридиана. Связь между магнитными румбами и азимутами такая же, как и в географической системе.

Связь дирекционных углов и азимутов, их аналитические зависимости: А = + ; А = Ат + .  - магнитное склонение,  - сближение меридианов.

Зависимость между азимутами истинным, магнитным и дирекционным углом

Вследствие непараллельности между собой меридианов истинный азимут протяженной прямой АВ (рис.9) принимает различные значения в точках А и В. В средних широтах истинный азимут изменяется на одну минуту через каждые один-два километра расстояния по параллели. Это осложняет применение азимутов и поэтому для построения планов используют дирекционные углы.

Рис.9.1 Зависимость между прямым

Рис.9.2 Зависимость между прямым и обратным дирекционными углами и обратным истинными азимутами

АВ = ВА + 180

ААВ = АВА + 180 -.

А =  + ,

А = Ам+ .

Приравняем правые части равенств

+  = Ам+  или  = Ам+  - .

Зональное сближение меридианов  и магнитное склонение  для данной местности указывают на топографических картах местности.

18. Прямая и обратная геодезические задачи.

а). Прямая

Дано: XA, YA, AB, dAВ

Определить: XB, YB

Решение:

XB=XA+dAB. cos AB=XA+X,

YB=YA+dAB. sin AB=YA+Y,

где X и Y - приращения координат, т.е. проекции горизонтального проложения на соответствующие оси координат.

Контроль вычислений координат выполняют по формуле

б). Обратная геодезическая задача

Дано: XA, YA, XB, YB.

Определить: AB, dAB.

Решение:

AB - r = arctg (Y/X),

Контроль: d . cos  + XA = XB,

d . sin  + YB = YB.

22. Виды ошибок измерений. Свойства случайных ошибок. Принцип арифметической средины.

Результаты многократных измерений одной и той же физической величины (линии, угла, превышения и т.п.), как правило, различаются между собой и не совпадают с точным (истинным) значением измеряе­мой величины, т.е. содержат неизбежные погрешности, вызываемые раз­личными причинами.

Если истинное значение измеряемой величины обозначить через X , а результат измерений её через L то,

L – X = A(дельта), будет абсолютной ошибкой измерения.

По своим свойствам, характеру возникновения я влияния на ре­зультаты измерений, их функции, погрешности подразделяют на грубые, систематические и случайные.

Грубые погрешности (промахи) возникают вследствие невниматель­ности наблюдателя, неисправности прибора, несоблюдении технологии ра­бот, не учёта влияния изменяющихся внешних условий: температуры, ветра, видимости и т.п. Обнаружить грубые погрешности можно, используя гео­метрические свойства наблюдаемого объекта (например, сумму внутренних углов плоского многоугольника), а также выполнением повторных измере­ний..

К систематическим относят такие погрешности результатов изме­рений, которые входят в эти результаты по определенному закону.

Так, если известна длина меры при температуре t0, а измерение длины линии местности выполнены при температуре t, то результат из­мерения длины линии будет содержать систематическую погрешность, пропорциональную разности температур (t – t0 ) и длине линии. Влияние систематических погрешностей на результаты измерений исключают или сводят до пренебрегаемо малого значения выбором методики измерений или введением поправок в результаты.

Случайные погрешности результатов измерений характеризуются тем, что при одинаковых условиях измерений они могут меняться по ве­личине и знаку; их нельзя заранее предусмотреть, определить закон воз­действия на результат. Статистический анализ, т.е. анализ результатов больших рядов измерений, позволил для случайных погрешностей вы­явить ряд их свойств.

Свойства:

Первое свойство. (ограниченности) Для данных условий измерений случайные погрешности по абсолютной величине не могут превосходить известного предела, т.е. |∆|<=∆пред.

Второе свойство. (симметрии) Равные по абсолютной величине положительныеи отрицательные случайные погрешности встречаются одинаково часто

Третье свойство. (плотности) Малые по абсолютной величине случайные по­грешности при измерениях встречаются чаще, чем большие.

Четвертое свойство. (компенсации ) Среднее арифметическое из случайных по­грешностей и их попарных произведений стремится к нулю при неогра­ниченном возрастании числа измерений, т.е.

n- число измерений; [ ]-Гауссов символ суммы.

Арифметическая средина

Если имеется ряд результатов равноточных измерений l1, l2,…,ln одной и той же величины, то за оканчатеьное значение принимают L – среднею арифметическую величину из всех результатов. L = l1+l2….+ln/n = [l]/n

Если X – истинное значение измеряемой величины, то, согласно общей формуле

A1 = l1 – X, A2 = l2 – X, … An = ln – X

Сложив правые и левые части уравнений, получим

(A1 + A2 + ,…+ An) = (l1 + l2 + … + ln) – nX

Или сокращённо [A] = [l] – nX откуда X = [l]/n – [A]/n

Согласно формуле из 4 свойства, с увеличениям числа измерений величина [A]/n будет стремиться к нулю, следовательно, при бесконечном большом числе измерений средняя арифметическая [l]/n = L будет равна X – истинному значению измеряемой величины. При конечном же числе измерений величина L будет вероятнейшим значением определяемой величины.

Если возьмём разности между каждым результатом измерения и средним арифметическим, т.е.

l1 – L = v1, l2 – L = v2…… ln – L = vn

и сложим их почленно то получим

[l] – nL = [v]

А из формулы L = l1+l2….+ln/n = [l]/n следует. Что [v] = 0

Величины v нызывают уклонениями от арифметической середины, или вероятнешими ошибками.

19. Рельеф, его изображение горизонталями, высота сечения рельефа, заложение горизонталей, свойства горизонталей, уклоны, масштаб заложений.

Рельефом называется совокупность неровностей земной поверхности. На общегеографических картах изображается отмывкой или штриховкой; на топографических картах и планах – горизонталями. Формы рельефа:

1. Гора, холм - конусообразное возвышение над окружающей местностью, наивысшая ее точка - вершина, боковые поверхности — скаты, линия их слияния с окружающей местностью - подошва, или основание, горы, примерно горизонтальные площадки на скате горы называют уступами.

2. Котловина (впадина)- замкнутое углубление, самая низкая ее точка - дно, боковая поверхность - скаты, линия их слияния с окружающей местностью - бровка.

3. Хребет-возвышенность, вытянутая в одном направлении. Скаты хребта при пересечении в верхней части образуют вода-раздел, или водораздельную линию.

4. Лощина - вытянутое и понижающееся в каком-либо направлении углубление, два ската лощины при пересечении образуют водосливную линию, тальвег, по которой стекает вода, попадающая на скаты.

5. Седловина - наиболее низкое место водораздела, обычно имеет вид седла, от седловины обычно берут начало две, расположенные в противоположных направлениях, лощины. В горной местности через седловины обычно проходят дороги или тропы, такие седловины называют перевалами.

Вершину горы и холма, дно котловины, самую низкую точку седловины, перегиб ската и т.п. называют характерными точками рельефа, а водораздел хребта и водосливную линию - характерными линиями рельефа.

Горизонтали. Прежде всего определяется высота характерных точек над уровенной поверхностью. Численное значение высоты точки называется отметкой. Имея отметки характерных точек, по определенным правилам строят горизонтали.

При проведении практических съемок часто оказывается целесообразным определять отметки не относительно основной, а относительно условно принятой уровенной поверхности. Тогда отметки в первом случае называются абсолютными, во втором – условными (HA, НВ абсолютные отметки; HD, НC условные).

Для того чтобы получить достаточно детальную характеристику данной формы рельефа, следует задать необходимое количество секущих поверхностей через равные промежутки по высоте hc. Каждая поверхность и соответственно каждая горизонталь характеризуется определенной отметкой. Отсюда определение: горизонтали – линия, соединяющая точки земной поверхности с одинаковыми отметками.

Расстояние между секущими поверхностями по высоте, т.е. разность отметок двух последовательных горизонталей hc называется высотой сечения рельефа. В зависимости от масштаба, вида рельефа и назначения плана или карты применяют hc = 0,25; 0,5; 1; 2; 2,5; 5 м и др. Чем меньше высота сечения рельефа, тем точнее должны быть выполнены работы по съемке рельефа.

Для изображения отдельных деталей рельефа применяют полугоризонтали, в том случае, если это не удается сделать при помощи основных горизонталей. Их проводят через hc/2, вычерчивают прерывистыми линиями

Свойства горизонталей и особенности их проведения:

1. Горизонталь - линия равных высот т.е. все ее точки имеют одинаковую высоту;

2. Горизонталь должна быть непрерывной плавной линией;

3. Горизонтали не могут раздваиваться и пересекаться;

4. Расстояние между горизонталями (заложение) характеризуют крутизну ската. Чем меньше расстояние, тем круче скат;

6. В случаях, когда заложение превышает 25мм, проводят дополнительные горизонтали (полугоризонтали) в виде штриховой линии;

Уклон.

Все формы рельефа образуются из сочетания наклонных поверхностей – скатов. Крутизна ската оценивается или углом наклона (в градусной мере), или величиной уклона i. Уклоном линии называется тангенс угла наклона линии к горизонту: i = tg  = h/d (рис. 24), где h – превышение; d – горизонтальное проложение линии. Угол наклона линии и уклон линии могут быть положительными (+; +i) или отрицательными (–; –i).

Масштаб заложений.

Катиночка=)

При помощи масштаба заложений определяеться угол наклона

20.Основные формы рельефа и их изображение горизонталей.

Под рельефом местности понимают совокупность неровностей земной поверхности.

На топографических планах рельеф изображется горизонталями (0,1-0,15мм) кривыми. Расстояние между соседними горизонталями по высоте называется сечением рельефа. В плане заложением для большей выразительности рельефа каждая 4-я четная по высоте 5м(сечения через 0,5) иля 5-я кратная высоте h=1м горизонталь утолщается и проводится t=0,25мм и в разрыве подписывается ее высота.

Основанием цифры в сторону понижения рельефа.

Направление ската склона обозначается берх-штрихами – черточками длина чрточки 0,5мм.

Для указания высот горизонталей их отметки подписывают в разрывах утолщенных 0,25мм горизонталей распологая основание цифр вниз по рельефу.

Различают следующие формы рельефа:

1). гора-куплообразная возвышенность (выше 200м)

2).Котловина (чашеобразное углубление)

3). Хребет – возвышенность вытянутой формы с постепенным понижением имеет водораздельную линию

4). Лощина – вытянутое углубление местности постепенно понижающиеся. Имеет водозборнную линию

5). Седоловина – понижение местности между соседними возвышенностями

21. Построение горизонталеей по отметкам точек. Виды интерполирования.

Построение горизонталей заключается в соединении плавными кривыми точек, найденных в результате интерполяции (аналитической, графической или на глаз). Начинать целесообразно с характерных по рельефу форм местности. Водораздельные и водосливные линии пересекаются горизонталями под прямыми углами.

Интерполяция Под интерполяцией в математике понимают всякий способ, с помощью которого можно по таблице найти промежуточные результаты, которых нет непосредственно в таблице

. При изображении горизонталей на планах используют следующие способы интерполяции:

Интерполирование на глаз

При наличии достаточного опыта определение местоположения горизонталей производят на глаз, руководствуясь теми же положениями, которые приведены в аналитическом методе интерполяции. Практика показывает, что глазомерное интерполирование обычно обеспечивает точность в ¼ hc, что соответствует точности съемки рельефа.

2. Аналитический, предусматривает определять расстояние до горизонталей из прямо пропорциональной зависимости между превышением и горизонтальным проложением между точками с подписанными на плане высотами. Из рис. видно, что расстояния от точки А до горизонталей с высотами 202 и 203 d1 = h1. dab/hab, d2 = h2. dab/hab,

где h1 и h2 - превышения между горизонталями с отметками 202 и 203 и точкой А с отметкой 201.35 (0.65 и 1.65 м); dab - расстояние, измеряемое на плане между пикетными точками; hab - превышение между точками А и В (203.30 - 201.35 = 1.95 м)

Графическое интерполирование

Такое интерполирование, по сравнению с аналитическим, позволяет выполнить работу быстрее, с обеспечением необходимой точности. При графическом интерполировании используют интерполятор или палетка. Для ее построения на кальке тушью вычерчивают ряд параллельных прямых линий на одинаковом расстоянии одна от другой (через 2, 4, 5 или 10 мм в зависимости от крутизны скатов данной местности и высоты сечения рельефа).

Для определения местоположения горизонталей интерполятор накладывается так, чтобы число линий интерполятора между точками А и В равнялось числу горизонталей на этом отрезке. Так, отрезок АВ должны пересекать три линии интерполятора. Затем, поворачивая и смещая интерполятор, необходимо получить такое его положение, чтобы dA составляло часть заложения d в соответствии с превышением hA, и одновременно dB также соответствовало превышению hB. Оценка приведенных соответствий производится измерениями, при достаточном опыте – на глаз. Фиксировать на плане найденные точки местоположения горизонталей можно наколами иглы (обычно оказывается достаточным надавливание карандашом).

Соседние файлы в папке Шпоры на экзамен