Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Динамика билеты / 27Количество движения, момент количества движения твёрдого

.docx
Скачиваний:
30
Добавлен:
20.02.2016
Размер:
569.64 Кб
Скачать

СИ

кг·м/с

И́мпульс (Коли́чество движе́ния) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

.

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер сфундаментальной симметрией — однородностью пространства.

Обобщённый импульс в теоретической механике

В теоретической механике обобщённым импульсом называется частная производная лагранжиана системы по обобщённой скорости

В случае, если лагранжиан системы не зависит от некоторой обобщённой координаты, то в силу уравнений Лагранжа .

Для свободной частицы в релятивистской механике функция Лагранжа имеет вид: , отсюда:

Независимость лагранжиана замкнутой системы от её положения в пространстве следует из свойства однородности пространства

функция Лагранжа  динамической системы, названа в честь Жозефа Луи Лагранжа, является функцией обобщённых координат и описывает эволюцию системы. Например уравнения движения (для классической механики) в этом подходе получаются из принципа наименьшего действия, записываемого как:

где действие — функционал 

а  — обобщённые координаты (например, координаты частиц или полевые переменные), обозначает множество параметров системы, в случае классической механики — независимые пространственные координаты и время, а более широком еще электрические или другие физические параметры.

Пример из классической механики

разности кинетической и потенциальной энергии механической системы.

где,  — радиус-вектор частицы, m — её масса и V — потенциальная энергия. Тогда уравнение Эйлера-Лагранжа будет: , где  — градиент.

уравнение , которое аналогично уравнению Ньютона с постоянной массой. Простые вычисления приведут нас к выражению , которое является вторым законом Ньютона в его обобщённой форме.

Момент импульса

м2·кг·с−1 В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.

Момент импульса  материальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где  — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта,  — импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где  — радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.  где  — импульс бесконечно малого точечного элемента системы).как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:.