Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Динамика билеты / 24Теория об изменении количества движения, момента

.docx
Скачиваний:
30
Добавлен:
20.02.2016
Размер:
85.33 Кб
Скачать

Формулировка теоремы

Количеством движения (импульсом) механической системы называют величину, равную сумме количеств движения (импульсов) всех тел, входящих в систему. Импульс внешних сил, действующих на тела системы, — это сумма импульсов всех внешних сил, действующих на тела системы.

Теорема об изменении количества движения системы утверждает

Изменение количества движения системы за некоторый промежуток времени равно импульсу внешних сил, действующих на систему, за тот же промежуток времени.

Диф форма

Интегральная форма

где  и  — значения количества движения системы в моменты времени  и  соответственно, а  — импульс внешних сил за промежуток времени . В соответствии со сказанным ранее и введёнными обозначениями выполняется

Доказательство

Пусть система состоит из  материальных точек с массами  и ускорениями . Все силы, действующие на тела системы, разделим на два вида:

Внешние силы — силы, действующие со стороны тел, не входящих в рассматриваемую систему. Равнодействующую внешних сил, действующих на материальную точку с номером i обозначим .

Внутренние силы — силы, с которыми взаимодействуют друг с другом тела само́й системы. Силу, с которой на точку с номером i действует точка с номером k, будем обозначать , а силу воздействия i-й точки на k-ю точку — . Очевидно, что при , то 

Используя введённые обозначения, запишем второй закон Ньютона для каждой из рассматриваемых материальных точек в виде

Учитывая, что  и суммируя все уравнения второго закона Ньютона, получаем:

Выражение  представляет собой сумму всех внутренних сил, действующих в системе. По третьему закону Ньютона в этой сумме каждой силе  соответствует сила  такая, что  и, значит, выполняется  Поскольку вся сумма состоит из таких пар, то и сама сумма равна нулю. Таким образом, можно записать

Используя для количества движения системы  обозначение , получим

Введя в рассмотрение изменение импульса внешних сил , получим выражение теоремы об изменении количества движения системы в дифференциальной форме:

Таким образом, каждое из последних полученных уравнений позволяет утверждать: изменение количества движения системы происходит только в результате действия внешних сил, а внутренние силы никакого влияния на эту величину оказать не могут.

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми  и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

где  и  — значения количества движения системы в моменты времени  и  соответственно, а  — импульс внешних сил за промежуток времени . В соответствии со сказанным ранее и введёнными обозначениями выполняется

Формулировка теоремы об изменении кинетической энергии материальной системы

Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение[2][3]:

Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

Дифференциальный вид

Интеграальная форма

где  и  — значения кинетической энергии системы в моменты времени  и  соответственно.

Доказательство теоремы

Рассмотрим систему материальных точек с массами , скоростями  и кинетическими энергиями . Для малого изменения кинетической энергии (дифференциала), происходящего в течение некоторого малого промежутка времени , будет выполняться

Учитывая, что  представляет собой ускорение i-ой точки , а  — перемещение той же точки  за время , полученное выражение можно записать в виде:

Используя второй закон Ньютона и обозначая равнодействующую всех сил, действующих на точку, как , получаем

а затем в соответствии с определением работы 

Суммирование всех уравнений такого вида, записанных для каждой из материальных точек, приводит к формуле для изменения полной кинетической энергии системы:

Данное равенство выражает утверждение теоремы об изменении кинетической энергии системы в дифференциальном виде.

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми  и , получим выражение теоремы об изменении кинетической энергии в интегральной форме:

где  и  — значения кинетической энергии системы в моменты времени  и  соответственно.

Необходимо подчеркнуть, что здесь, в отличие от случаев теоремы об изменении количества движения системы и теоремы о движении центра масс системы, учитывается действие не только внешних, но внутренних сил.

Закон сохранения механической энергии

Отдельный интерес представляют системы, в которых на тела действуют потенциальные силы[4]. Для таких сил вводится понятие потенциальной энергии, изменение которой в случае одной материальной точки по определению удовлетворяет соотношению:

где  и  — значения потенциальной энергии точки в начальном и конечном состояниях соответственно, а  — работа потенциальной силы, совершаемая при перемещении точки из начального состояния в конечное.

Изменение потенциальной энергии системы получается в результате суммирования изменений энергий всех тел системы:

Если все внутренние и внешние силы, действующие на тела системы, потенциальны, то

Подставляя полученное выражение в уравнение теоремы о кинетической энергии, получим:

или, что то же самое

Иначе говоря, получается, что для полной механической энергии системы  выполняется

Таким образом, можно сделать вывод:

Если на тела системы действуют только потенциальные силы, то полная механическая энергия системы сохраняется.

Данное утверждение и составляет содержание закона сохранения механической энергии, являющегося следствием теоремы о кинетической энергии и одновременно частным случаем общего физического закона сохранения энергии[2][3].