Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электротехника.docx
Скачиваний:
121
Добавлен:
21.02.2016
Размер:
78.25 Кб
Скачать

1.Электрические цепи и их элементы. Понятие узел и контур.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи.

Ветвь и узел электрической цепи

Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. В зависимости от особенностей схемы следует применять тот или иной способ расчета электрической цепи. В данном разделе рассмотрим ключевые понятия, которые в дальнейшем будут необходимы для выбора наиболее оптимального и правильного приема решения задач.

Ветвью называется участок электрической цепи, обтекаемый одним и тем же током. Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.

Узел - место соединения трех и более ветвей.

При обходе по соединенным в ветвях цепям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел встречается в данном контуре не более одного раза. Ниже приведена электрическая схема, на которой отмечено несколько произвольно выбранных контуров.

2.Основные электротехнические величины: ЭДС, напряжение и ток.

3. Электротехнические материалы (проводники, полупроводники, диэлектрики).

По способности проводить электрический ток вещества можно разделить на

-проводники

-полупроводники

-диэлектрики

Эта способность обусловлена особенностью строения веществ.

В проводниках присутствуют свободные носители заряда - это часть электронов сравнительно слабо связанных с ядром, которые могут перемещаться с орбиты одного ядра на орбиту другого под воздействием внешнего электрического поля. Такие электроны называются свободными. К проводникам относятся такие вещества, как медь, алюминий.

Диэлектриками называются вещества, основным электрическим свойством которых является их способность поляризоваться в электрическом поле. Строение диэлектриков характеризуется наличием незначительного количества свободных электронов и молекул, вытянутых по форме (полярные диполи). Суть явления поляризации заключается в том, что под воздействием внешнего электрического поля связанные заряды диэлектрика смещаются в направлении действующих на них сил и тем больше, чем выше напряженность поля.

В дипольных диэлектриках воздействие электрического поля вызывает соответствующую ориентацию дипольных молекул в направлении поля. При отсутствии поля диполи расположены беспорядочно вследствие теплового движения. В результате поляризации на поверхности диэлектрика образуются заряды разных знаков. Проводимость диэлектриков обусловлена наличием незначительного числа свободных зарядов. Диэлектрические материалы обладают очень большим электрическим сопротивлением, которое находится в пределах 106... 1011 Ом*м.

Диэлектрические материалы классифицируют по:

-агрегатному состоянию:

жидкие;

газообразные;

твердые.

-по способу получения:

естественные;

синтетические.

-по химическому составу:

органические;

неорганические.

-по строению молекул:

нейтральные;

полярные.

К диэлектрикам относятся воздух, азот, элегаз, лаки, слюда, керамика, полэтилен.

Промежуточное положение между проводниками и диэлектриками занимают полупроводники. К полупроводникам относятся элементы IV группы периодической системы элементов Д. И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники - германий Ge и кремний Si.

Чистые полупроводники обладают удельным сопротивлением в пределах 10-5 — 108 Ом * м. Для снижения высокого удельного сопротивления в чистые полупроводники вводят примеси - проводят легирование, такие полупроводники называются легированными. В качестве легирующих примесей применяют элементы III (бор В) и V (мышьяк As) групп периодической системы элементов Д. И. Менделеева.

Область на границе двух полупроводников, один из которых имеет дырочную, а другой - электронную проводимость, называют р-n - переходом.

4.Ферромагнитные материалы. Свойства и их применение.

Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри.

Свойства ферромагнетиков

1.Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.

2.При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

3.Для ферромагнетиков характерно явление гистерезиса

Гистере́зис (греч. ὑστέρησις — отстающий) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление "насыщения", а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках).

Применение ферромагнетиков

Ферромагнетики имеют наибольшее практическое применение, хотя их и не так много в природе. Железный или стальной сердечник в катушке во много раз усиливает создаваемое этой катушкой поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и других устройств изготавливают из ферромагнетиков. При выключении внешнего магнитного поля ферромагнетик остаётся намагниченным, то есть создаёт магнитное поле в окружающем его пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях, телефонах, в устройствах звукозаписи, магнитных компасах и т.д. Большое распространение получили ферриты - ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных человеку ферромагнитных материалов - магнитный железняк - является ферритом.