Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по бх.спорта.doc
Скачиваний:
35
Добавлен:
28.02.2016
Размер:
432.13 Кб
Скачать

Тема 1

БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ

Цель занятия: Изучить химический состав скелетных мышц, выяснить химизм мышечного сокращения и расслабления. Усвоить роль химических составных частей и структурных элементов в обменных процессах, обеспечивающих мышечную работу.

Специфической функцией мышц является обеспечение двигательной функции - сокращения и расслабления. В связи с выполнением этой важной функции строение мышечной клетки и ее химический состав имеет ряд специфических особенностей.

70-80% массы мышц составляет вода, 20-26% сухой остаток.

Характерным для мышц является высокое содержание белка 16,5-20,9%. Это обусловлено тем, что кроме белков, присущим и другим клеткам, в мышцах имеются специфические сократительные белки, составляющие 45% всех белков мышечной клетки. Остальную массу белков составляют белки саркоплазмы (около 30%) и белки стромы (15% от общего количества).

Скелетная мышца состоит из пучков волокон, заключенных в общую соединительную оболочку-сарколемму. Внутри каждого волокна находится около сотни или более миофибрилл, длинных специализированных органелл мышечной клетки, осуществляющих функции сокращения. Каждая миофибрилла состоит из нескольких параллельных нитей, так называемых филаментов двух типов - толстых и тонких, которые располагаются в ней гексагонально; каждый толстый филамент окружен шестью тонкими. Структурная связь между филаментами осуществляется только регулярно расположенными «поперечными мостиками». При сокращении и расслаблении филаменты тонкие скользят вдоль толстых и не изменяют своей длины. При этом связи между филаментами двух типов разрушаются и возникают вновь. Толстые нити главным образом состоят из белка миозина, а тонкие- из актина. Сократительный белок миозин характеризуется высокой молекулярной массой (более 440000).

Особенностью миозина является то, что он имеет участки, обладающие ферментативной активностью (АТФ - азная активность), проявляющаяся в присутствии Са2+. Под влиянием миозина АТФ расщепляется на АДФ и неорганический фосфат (Н3РО4). Выделяющаяся энергия используется для мышечного сокращения.

Актин – сократительный белок, с более низкой молекулярной массой (около 420000). Он может существовать в двух формах: глобулярной (G -актин) и фибриллярной (F - актин). F- актин- полимер G- актина. F – актин - активирует АТФ - азу миозина, что создает движущую силу, вызывающую скольжение тонких и толстых нитей друг относительно друга. Кроме этих двух основных белков сократительная система содержит регуляторные белки, локализованные в тонких (актиновых нитях) –тропомиозин В и тропонин, состоящий из трех субъединиц: J, С и Т.

Тропомиозин В имеет нитчатую спирализованную структуру и расположен в бороздке спиральной цепи F-актина. Тропонин связан с тропомиозином В и может образовывать комплексы с актином и миозином.

Комплекс тропомиозин В–тропонин называют расслабляющим белком, так как он связан с прцессом расслабления сократившейся фибриллы. Из тонких нитей выделены еще 2 белка: и – актин, являющийся, видимо, белками, укрепляющими сложную структуру тонких нитей. Ориенти ровочно в миофибрилле содержится миозина, актина, тропомиозина и тропонина по отношению к общему белку 55, 25, 15 и 5 % соответственно. Следует отметить еще два мышечных белка: миостромин и миоглобин. Миостромины составляют основу мышечной стромы, это труднорастворимые белки, не извлекаемые из мышцы солевыми растворами. Мышечная строма обладает эластичностью, что имеет существенное значение для расслабления мышцы после ее сокращения. Миоглобин – белок, содержащий железо и близкий по строению и функциям к белку эритроцитов – гемоглобину. Он обладает значительно - большим сродством к кислороду, чем гемоглобин и, накапливая приносимый кровью кислород, является запасным резервуаром кислорода в мышце.

Из небелковых веществ следует отметить кроме АТФ прежде всего креатинфосфат (КФ) и гликоген. КФ – первый мощный резерв ресинтеза (восстановления) АТФ, затрачиваемый на мышечные сокращения. Гликоген – основной запасной углеводный источник энергии мышцы. Мышца содержит ряд промежуточных продуктов обмена углеводов: (пировиноградная, молочная кислоты и др.) и большое количество минеральных ионов. Наиболее высокое содержание в мышце К+ и РО4--, несколько меньше Nа +, Mg ++, Ca ++, Cl -, Fе3+, SО4--_.

Внутри мышечного волокна, под сарколеммой, находится саркоплазма – жидкий белковый раствор, окружающий сократительные элементы мышечного волокна – миофибриллы, а также другие структурные компоненты – органоиды, выполняющие определенную функцию. Это прежде всего – саркоплазматический ретикулум и Т-система, имеющие прямое отношение к мышечному сокращению. Саркоплазматический ретикулум непосредственно связан с сокращением и расслаблением мышцы, регулируя освобождение из своих элементов и обратный транспорт Са2+ в мышечном волокне. По Т-системе передается изменение электрического потенциала поверхностной мембраны элементам ретикулума, что приводит в них к освобождению ионов Са, поступающих к фибриллам и запускающих процесс мышечного сокращения. Митохондрии – содержат ферменты окислительных процессов, осуществляющие образование основного источника энергии мышечного сокращения – АТФ.

В основе мышечного сокращения лежит продольное перемещение миозиновых и актиновых филаментов друг относительно друга без изменения длины самих филаментов. Связь между филаментами осуществляется с помощью «поперечных мостиков» - головок миозина, выступающих с поверхности миозинового филамента и способных взаимодействовать с актином. Стимулом для включения сложного механизма мышечного сокращения служит нервный импульс, передаваемый на мышечную клетку двигательным нервом, быстро распространяющийся через сарколемму и вызывающий на окончании двигательного нерва (синапса) освобождение ацетилхолина – химического посредника (медиатора) в передаче нервного возбуждения. Выделение ацетилхолина на поверхность мембраны клетки создает разность потенциалов между ее наружной и внутренней поверхностью, связанную с изменением ее проницаемости для ионов Na+ и К+. В момент деполяризации сарколеммы деполяризуется и Т- система мышечной клетки. Так как Т-система контактирует со всеми фибриллами волокна, электрический импульс распространяется одновременно на все его саркомеры. Изменения в Т-системе сразу же передаются тесно прилегающим к ней мембранам ретикулума, вызывая увеличение их проницаемости, следствием чего является выход кальция в саркоплазму и миофибриллы. Сокращение происходит при увеличении концентрации Са2+ в пространстве между филаментами актина и миозина до 10-5 М.

Ионы Са2+ присоединяются к тропонину С (кальмодулину), что влечет за собой изменение конформации всего комплекса, тропомиозин отклоняется от головки миозина примерно на 20о, открывая активные центры актина, способные соединиться с миозином (заряженным энерг ией АТФ и находящимся в комплексе с АДФ и Фн в присутствии Mg++), образуя комплекс актомиозин.

Изменяется конформация глобулярной части молекулы миозина (головки), которая отклоняется на определенный угол, примерно на 45о от направления оси миозинового филамента и перемещает за собой тонкий актиновый филамент: происходит сокращение. Конформационное изменение миозина приводит к гидролизу АТФ под действием его АТФазы. АДФ и фосфатная группа выделяются в среду. Их место занимает другая молекула АТФ. В результате восстанавливается исходное состояние и рабочий цикл может повторяться. Частота рабочего цикла и его продолжительность определяется концентрацией Са2+ и наличием АТФ.

После прекращения действия двигательного импульса происходит обратный транспорт ионов Са2+ в саркоплазматический ретикулум, концентрация его между филаментами актина и миозина падает ниже 10-7 М, и мышечные волокна теряют способность образовывать актомиозин, укорачиваться и развивать тянущее напряжение в присутствии АТФ.

Происходит расслабление мышцы. Обратный транспорт

Са2+осуществляется за счет энергии, получаемой при расщеплении АТФ ферментом Са2+ - АТФазой. На перенос каждого иона Са2+ затрачивается 2 молекулы АТФ. Таким образом, энергия для сокращения и расслабления обеспечивается поступлением АТФ. Следовательно, между сокращениями постоянно должны возобновляться запасы АТФ. Мышцы обладают весьма мощными и совершенными механизмами восполнения (ресинтеза) расходуемой АТФ и поддержания ее концентрации на необходимом, оптимальном уровне для обеспечения различной по длительности и мощности работы.

Этой цели, наряду с высоким исходным АТФ, служит высокая активность дыхательных ферментов и способность мышцы в сравнительно короткое время (1-3 мин) увеличить уровень окислительного процесса во много раз. Увеличение кровоснабжения мышц при работе способствует увеличению притока кислорода и питательных веществ.

В начальный период может быть использован кислород, связанный с миоглобином. Возможность ресинтеза АТФ обеспечивается и внутренними механизмами клетки – высоким уровнем креатинфосфата, также высокой концентрацией гликогена и активностью ферментов гликолиза.

Вопросы к занятию

  1. Морфологическая организация скелетной мышцы.

  2. Роль внутриклеточных структур в жизнедеятельности мышечной клетки.

  3. Структурная организация и молекулярное строение миофибрилл.

  4. Химический состав мышцы.

  5. Роль АТФ в сокращении и расслаблении мышечного волокна.

  6. Механизм мышечного сокращения. Последовательность химических реакций в мышце при ее сокращении.

  7. Расслабление мышцы.