Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
10
Добавлен:
29.02.2016
Размер:
124.42 Кб
Скачать

9

«Вступ до курсу». Тема 1 «Апроксимація»

ТЕМА 1

ЦІЛЬ ЛЕКЦІЇ

  • познайомити із задачами курсу "Числові методи та автоматизація проектування":

  • викласти короткий зміст курсу;

  • дати список рекомендованої літератури;

  • ввести поняття «чисельні методи»;

  • викласти основні положення апроксимації;

  • навести приклад апроксимації табличних даних

Ключові слова: чисельний метод, апроксимація, сплайн, припасування кривої

ВСТУП

Мета

Метою викладання дисципліни “Чисельні методи та автоматизація проектування транспортних споруд” є формування знань та навиків, що необхідні для чисельного аналізу напружено-деформованого стану транспортних споруд, знайомство із сучасними дискретними моделями, знайомство із сучасними комп’ютерними технологіями проектування споруд. Значна увага приділяється формуванню навиків самостійної роботи з комп’ютером, як це передбачено моделлю інженера за спеціальністю 7.092106 “Мости і транспортні тунелі” .

Завдання вивчення дисципліни формулюються в наступному:

  • оволодіння фундаментальними положеннями чисельних методів;

  • знайомство з сучасними математичними дискретними моделями теорії споруд;

  • знайомство із сучасними ідеями та принципами автоматизації проектування транспортних споруд;

  • опанування технології роботи в програмних комплексах MathCAD, Excel, AutoCAD, SCAD.

Короткий зміст.

Задача предмету – познайомити з основними методами, використовуваними в теорії споруд, сучасними математичними моделями їх розрахунку, познайомити з ідеями і термінологією у області автоматизованого проектування споруд, надати можливість одержати навики використовування сучасних комп'ютерних технологій в проектуванні.

В курс лекцій присвячено такій тематиці:

  • апроксимація та інтерполяція;

  • чисельна інтеграція;

  • розв’язок систем лінійних рівнянь;

  • загальні положення методу скінчених елементів;

  • принципи і програми автоматизованого проектування споруд.

Тут відводиться рівна кількість годинника на курс лекцій і на практичні заняття.

Практичні заняття ставлять свою за мету прищепити навики використовування сучасних інтегрованих програмних комплексів, вживаних в автоматизованому проектуванні. Йдеться про використовування, в першу чергу, таких програм: MathCAD, Excel, AutoCAD і SCAD.

Рекомендовані підручники і навчальні посібники:

  1. Лантух-Лященко А.И. Гл. 18 «Автоматизація проектування та управління мостами» в кн. Мости: конструкція та надійність, за ред. В.В.Панасюка. – Львів: Каменяр, 2005. 989 с.

  2. Городецкий А.С., Заворицкий В.И., Лантух-Лященко А.И., Рассказов А.О. М.: Автоматизация расчетов транспортных сооружений. Транспорт, 1989. – 232 с.

  3. Лантух-Лященко А.И. ЛИРА. Программный комплекс для расчета и проектирования конструкций. Учебное пособие М.-К.: Факт, 2001. – 359 с.

  4. Вычислительный комплекс .SCAD / В.С.Карпиловский, Э.З.Криксунов, А.А.Маляренко, М.А.Микитаренко, А.В. Перельмутер, М.А.Перельмутер. – М.: Изд. «СКАД СОФТ», 2009. – 656 с.

  5. Плис И.А., Сливина Н.А. MathCAD 2000. Математический практикум. Учебное пособие. – М.: Финансы и статистика, 2000. – 656 с.

1. Чисельні методи

Більшість задач розрахунку споруд не мають розв’язку у замкнутому вигляді за допомогою відомих функцій. В цих випадках вихід один – отримати розв’язок шляхом чисельної процедури, яка оперує не функціями а деякою множиною чисел. Ці процедури складають велику і дуже важливу гілку математики, яку називають чисельні методи.

¨

Визначення. Чисельними наз. методи наближеного чи точного розв’язку задач прикладної математики, які ґрунтуються на побудові скінченної послідовності дій над скінченною множиною чисел.

Нерідко чисельні методи розрахунку споруд ототожнюють з дискретними методами. І це цілком вірно, тому що математична дискретизація континуального об’єкту за своєю суттю є чисельним розв’язком задачі розрахунку споруди.

Сьогодні застосування чисельних методів в задачах теорії споруд стало настільки поширеним, що аналітичні методи в складних задачах майже не застосовуються. Це пояснюється бурхливим розвитком обчислювальної техніки і тим фактом, що комп’ютерні програми для дискретних задач є більш простими

1.1. Апроксимація та інтерполяція

1.1.1. Апроксимація

Однією із важливих задач чисельних методів є математичний опис зв'язків в процесах і явищах. Універсальним способом такого опису є аналітична функціональна залежність

, (1.1.)

якою незалежним змінним , ставиться у відповідність одне значення функції . У кожному конкретному випадку формальне співвідношення (1.1.) має бути представлено певною функцією. Що ж стосується самою функції , як правило, вона невідома. Тоді і залучається апарат чисельних методів, який має назву апроксимація (наближення).

Наголосимо, що мова про апроксимацію йде в тому випадку, коли є потреба у визначенні функції за допомогою іншої функції .

Така заміна робиться, якщо нічого невідомо відносно функції або ж є недостатня кількість інформації для її точного визначення.

Наприклад, у проектуванні мостів, нам завжди потрібна функція, що описує зміну тиску на дану балку прогонової будови в залежності від положення одиничної сили, що переміщається в поперечному напрямку. Сьогодні в теорії споруд немає такої функції в загальному виді. Але її можна одержати апроксимацією дискретного чисельного розв’язку задачі чи на основі таблиці експериментальних даних.

Або інший приклад: апроксимація часто потребується там де є підбір аналітичної залежності, що описує результати експерименту.

Не менш важливою областю апроксимації є апріорне наближене представлення шуканої функції в чисельних методах теорії споруд.

¨

Визначення. Апроксимація є наближене визначення невідомої функції F(x) функцією заданого виду f(x). Це наближення виконується на основі наявних дискретних значень в окремих точках заданого інтервалу х.

Як апроксимуючу функцію, часто застосовуються алгебраїчний поліном ступеня n. Така функція має вид:

, (1.2)

тобто парабола n– ого ступеня.

Полином (1.2) має n+1 коефіцієнт. Відповідним підбором коефіцієнтів можна задовольнити n+1 умов. Підбір виконується шляхом розв’язку системи n+1 лінійних рівнянь з вектором вільних членів з відомих значень функції у заданих точках (вузлах).

Звідси випливає, що якщо ми хочемо апроксимувати невідому функцію так, щоб значення збігалися з у трьох вузлах, досить параболи другого ступеня, у чотирьох – третього і т.д. (рис.1.1).

¡ ¡ ¡ F(x)

____ f(x)

Рис. 1.1. Апроксимація функції F(x) функцією f(x)

При цьому апроксимуюча крива проходить через кожний вузол. Ця загальна процедура припасування кривої і являє собою апроксимацію функції, яка задана таблицею.

Проте, в задачі припасування кривої, як правило, не ставиться вимога, щоби крива проходила через кожний вузол. Звичайно криву прагнуть провести так, щоб її відхилення від табличних даних були мінімальними. Найбільш поширеним способом мінімізації відхилення є метод найменших квадратів. За цим методом апроксимуюча функція визначається так, щоб звести до мінімуму суму квадратів різностей між табличними значеннями в вузлах та апроксимуючої кривої.

Іншим, дуже поширеним способом апроксимації є застосування сплайнів.

Сплайном називається функція виду:

, (1.3)

де - поліном ступеня не вище ;

- коефіцієнти які одержують з умов на кінцях інтервалу апроксимації.

У практиці апроксимації найчастіше застосовуються квадратні і кубічні сплайни. Так квадратний сплайн () має вигляд:

(1.4)

Найбільш поширеним, і сьогодні навіть класичним, став кубічний сплайн (n=3).

Сплайн третього ступеня має яскраву механічну інтерпретацію: це тонка сталева лінійка, вигнута таким чином, щоб вона стикалася з заданими точками дискретних значень шуканої функції . Будучи деформована таким чином, лінійка здобуває форму, при якій запасена в ній пружна енергія мінімальна. Використовуючи теорію вигину бруса при малих деформаціях, можна строго показати, що сплайн – це група сполучених кубічних багаточленів, у місцях сполучення яких перша і друга похідні неперервні.

Теорія сплайнової апроксимації інтенсивно розвивалася в останні 30 років і тепер вважається універсальним методом. Апроксимація сплайнами є в усіх відомих математичних і графічних програмних комплексах.

В теорії споруд часто застосовується апроксимація тригонометричним поліномом.

Функція виду.:

, (1.5)

де - параметр поділу інтервалу апроксимації, ;

L – довжина відрізку апроксимації,

називається тригонометричним поліномом

Наближення тригонометричним поліномом часто застосовується для апроксимації функції в чисельних дискретних розв’язках задач теорії споруд.

Інші функції.

Тут тільки назвемо декілька найбільш відомих апроксимуючих функцій і прийомів:

  • експоненціальні функції;

  • гіперболічні функції;

  • поліноми Лежандра ;

  • функції Бесселя;

  • апроксимація поліномами Лагранжа.

Соседние файлы в папке Тема 01
  • #
    29.02.20166.25 Кб7Ex4Aproxim.mcd
  • #
    29.02.20168.85 Кб7ПолиномАппр.mcd
  • #
    29.02.2016124.42 Кб10Тема 01.doc