Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

шпоры по химии

.docx
Скачиваний:
69
Добавлен:
29.02.2016
Размер:
46.88 Кб
Скачать

1.Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Атомно - молекулярное учение.

1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов. Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Атомное ядро - центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Аллотропия - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества- молекулы, состоят из атомов одного и того же элемента.

Cложные вещества - молекулы, состоят из атомов различных химических элементов. Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода 12C.

Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов)

2.

5. Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Например, натрий похож на калий, фтор похож на хлор, а золото похоже на серебро и медь. Разумеется, свойства не повторяются в точности, к ним добавляются и изменения. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две — атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеевым были предприняты очень смелые шаги: он исправил атомные массы некоторых элементов (например, бериллия, индия, урана, тория, церия, титана, иттрия), несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими (например, таллий, считавшийся щелочным металлом, он поместил в третью группу согласно его фактической максимальной валентности), оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы

7. Ионной связь – химическая связь осуществляемая за счет электростатического притяжения положительных и отрицательных ионов. Образуется в том случае, когда взаимодействуют атомы противоположные по свойствам (активные металлы 1-2 групп с активными неметаллами 4 и 7 групп). Атомы металла отдают внешние электроны и превращаются в положительные ионы, а неметаллы принимают и превращаются в отрицательные ионы. Далее образованные ионы взаимодействуют друг с другом под действием электростатического напряжения (раствор или расплав соли). В твердом виде наблюдается смещение электронной плотности от атома металла к атому неметалла. Атом металла может потерять до 90%электроноой плотности. Соединения образованные путем притяжения называются ионными

8 Энергия Гиббса – функция состояния системы, = максимальной ее работе в изобарном изотермическом процессе. Связана с энтальпией и энтропией , где Т абсолютная температура, К. Энтальпия – функция состояния равная внутренней энергии системы + работа расширения. . Энтропия - Функция состояния системы, являющаяся термодинамической мерой ее неупорядоченности. В изолированной системе самопроизвольные процессы могут протекать только в направлении увеличения энтропии. Для процессов, протекающих при постоянной температуре и давлении давлении энергия Гиббса . Общим критерием самопроизвольного протекания химического процесса является уменьшение энергии Гиббса анализ показывает, что для эндотермических реакций сопровождающихся увеличением беспорядка в системе при высоких температурах. В случае экзотермических реакций сопровождающихся уменьшением беспорядка при низких температурах. Если ,то процесс в прямом направлении невозможен, идет обратная реакция.

10. Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na+, Mg2+, Аl3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО3-, SO2-4, РОЗ-4и т.д.).

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссо­циации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так: КА=+К+А-

11. Сильные электролиты в водных растворах полностью диссоциируют на ионы. Их диссоциация происходит необратимо:

HNO3 ® H+ + NO3-

Слабые электролиты в водном растворе диссоциируют частично, т.к. их диссоциация является обратимым равновесным процессом, что и отражается знаком обратимости в уравнениях диссоциации:

СНСООН ═ СНСОО- + Н+

Применительно к водным растворам сильными электролитами являются:

1. Сильные кислоты:

HCl, HBr, HY, H2SO4, HNO3, HСlO4, HMnO4

2. Сильные основания (щелочи):

гидроксиды щелочных (группа IA) и щелочноземельных металлов (г руппа IIA периодической системы, кроме гидроксидов Be(OH)2, Mg(OH)2).

3. Большинство растворимых солей (исключения: Fe (SCN)3, Mg(CN)2, HgCI2, Hg(CN)2 и др.)

К слабым электролитам относятся:

1. Слабые кислоты:

H2CO3, H2S, H3BO3, HCN, HNO2, H3PO4, H2SO3, H2SiO3 и большинство органических кислот.

2. Слабые основания и амфотерные гидроксиды металлов: Be(OH)2, Mg(OH)2, Fe(OH)2,Zn(OH)2, гидроксид аммония NH4OH, а также органические основания – амины (CH3NH2 ) и амфолиты (H3N+CH2COO-) .

3. Очень слабым электролитом является вода, a = 2 ∙10-9.

Необходимо отметить, что между силой электролита и его растворимостью нет прямой связи. Хорошо растворимые в воде вещества могут быть сильными электролитами (HCl, NaOH, NaCl), слабыми электролитами (CH3COOH, NH4OH), неэлектролитами (C2H5OH, C6H12O6). С другой стороны, некоторые соли плохо растворимы в воде, например в 1 л воды растворяется только 2 мг BaSO4, но все это количество соли существует в растворе только в виде ионов, поэтому BaSO4 - сильный электролит.

Для характеристики силы электролита неудобно использовать только величину степени диссоциации, т.к. для этого необходимо иметь растворы одинаковых концентраций. Количественной характеристикой процесса диссоциации слабых электролитов является константа диссоциации.

CH3COOHÛCH3COO++ H-

В растворах слабых электролитов устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. Это равновесие количественно характеризуется константой равновесия, которая применительно к процессу диссоциации называется константой диссоциации:

[Н+][СН3СОО-]

Кдисс = [СН3СООН]

Константа диссоциации электролита не зависит от концентрации раствора, но зависит от температуры, а также от природы растворенного вещества и растворителя и при данных условиях является постоянной величиной. Кдисс показывает отношение концентрации ионов в растворе слабого электролита к концентрации недиссоциированных молекул. У сильных электролитов константа диссоциации отсутствует.

Константа диссоциации слабых электролитов является мерой их силы: чем меньше значение константы, тем слабее электролит.

12 ЭЛЕКТРОЛИТЫ, в-ва, в к-рых в заметной концентрации присутствуют ионы, обусловливающие прохождение электрич. тока (ионную проводимость). Электролиты также наз. проводниками второго рода. В узком смысле слова электролиты-в-ва, молекулы к-рых в р-ре вследствие электролитической диссоциации распадаются на ионы. Различают электролиты твердые, растворы электролитов и ионные расплавы. Р-ры электролитов часто также наз. электролитами. В зависимости от вида р-рителя различают электролиты водные и электролиты неводные.В обменных реакциях, протекающих в растворах электролитов, наряду с недиссоциированными молекулами слабых электролитов, твердыми веществами и газами участвуют также находящиеся в растворе ионы. Поэтому сущность протекающих процессов наиболее полно выражается при записи их в форме ионно-молекулярных уравнений. Например, уравнения реакций нейтрализации сильных кислот щелочами

HClO4 + NaOH →NaClO4 + H2O,

2HNO3 + Ba(OH)2 → Ba(NO3)2 + 2H2O,

выражаются одним и тем же ионно-молекулярным уравнением

H+ + OH– → H2O,

из которого следует, что сущность этих процессов сводится к образованию из ионов водорода и гидроксид-ионов малодиссоциированного электролита – воды. Аналогично уравнения реакций

BaCl2 +H2SO4 → BaSO4 + 2HCl,

Ba(NO3)2 + Na2SO4 → BaSO4 + 2NaNO3

выражают один и тот же процесс образования из ионов Ва2+ и SO42— осадка малорастворимого электролита – сульфата бария

Ва2+ + SO42– → BaSO4↓.

реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ. реакции в растворах электролитов идут до конца если в результате взаимодействия веществ происходит образование осадка, выделение газа и образование слабого электролита

13. Электролитическая диссоциация — распад электролитов на ионы при растворении в воде или расплавлении. Если через раствор или расплав электролита пропускать электрический ток, то положительные ионы будут двигаться к отрицательному электроду — катоду. Положительные ионы получили название катионы.

Отрицательные ионы будут двигаться к положительному электроду — аноду, и называются анионами.

Этот процесс изображают с помощью уравнений диссоциации:

NaOH = Na+ + OH–

Кислоты диссоциируют на катионы водорода (упрощенно) и анионы кислотных остатков

HCl = H+ + Cl

при диссоциации солей образуются катионы металла и анионы кислотного остатка

Na2SO4 = 2Na+ + SO42

У оснований механизм диссоциации такой же, как и у солей. Растворимые основания — щелочи, — диссоциируют с образованием катиона металла и гидроксид-ионов:

NaOH = Na+ + OH–

Если через раствор или расплав электролита пропускать электрический ток, то положительные ионы будут двигаться к отрицательному электроду — катоду. Положительные ионы получили название катионы.

Отрицательные ионы будут двигаться к положительному электроду — аноду, и называются анионами.

14. Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов).

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на истинные и коллоидные. В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени.

Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными.

Растворимость для различных веществ колеблется в значительных пределах и зависит от их природы, взаимодействия частиц растворенного вещества между собой и с молекулами растворителя, а также от внешних условий (давления, температуры и т. д.)

В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными.

Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах.

15. Явление, связанное со способностью проходить через мембрану, в частности, только молекул растворителя, называется осмосом, а вызываемое им изменение давления по обе стороны мембраны – осмотическим давлением. Явление осмоса чрезвычайно разнообразно и во многом определяется природой мембраны и компонентов раствора.

Осмотическое давление π – внутреннее давление растворенного вещества, численно равное тому внешнему давлению, которое нужно приложить, чтобы прекратить осмос; оно зависит от температуры и концентрации. По Вант-Гоффу осмотическое давление раствора численно равно тому газовому давлению, которое имело бы растворенное вещество, будучи переведенным в газообразное состояние в том же объеме и при той же температуре. Если растворы характеризуются одинаковыми осмотическими давлениями, то по Вант-Гоффу такие растворы называются изотоническими. Независимо от природы растворенного вещества, изотоничность является следствием одинакового числа частиц в растворе.

16 Законы Рауля и принцип Вант-Гоффа не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток – растворов электролитов. Обобщая экспериментальные данные, Я.Г. Вант-Гофф пришел к выводу, что растворы электролитов всегда ведут себя так, будто они содержат больше частиц растворенного вещества, чем следует из аналитической концентрации: повышение температуры кипения, понижение температуры замерзания, осмотическое давление для них всегда больше, чем вычисленные. Для учета этих отклонений Вант-Гофф внес в уравнение (III.16) для растворов электролитов поправку – изотонический коэффициент i:

Изотонический коэффициент для растворов электролитов всегда больше единицы, причем с разбавлением раствора i возрастает до некоторого целочисленного значения. Рауль провёл многочисленные измерения температур замерзания и кипения водных и неводных растворов различных веществ и пришёл в выводу: количества различных веществ, которые вызывают одинаковое (по сравнению с чистым растворителем) понижение температуры замерзания или повышение температуры кипения, зависят только от их молекулярных масс. Законы Рауля дали возможность определять молекулярные массы по понижению температуры замерзания или по повышению температуры кипения разбавленных . растворов

Для объяснения особенностей свойств растворов электролитов С. Аррениус предложил теорию электролитической диссоциации, основывающуюся на следующих постулатах:

1. Электролиты в растворах распадаются на ионы – диссоциируют;

2. Диссоциация является обратимым равновесным процессом;

3. Силы взаимодействия ионов с молекулами растворителя и друг с другом малы (т.е. растворы являются идеальными).

Диссоциация электролитов в растворе происходит под действием полярных молекул растворителя; наличие ионов в растворе предопределяет его электропроводность. Для оценки полноты диссоциации в теории электролитической диссоциации вводится понятие степень диссоциации α, которая равна отношению числа молекул n, распавшихся на ионы, к общему числу молекул N:

17. Ионные реакции — реакции между ионами в растворе. Например, реакцию

AgNO3 + NaCl = NaNO3 + AgCl

можно представить в ионном виде (реакция расписывается на ионы, не расписываются осадки, газы, вода, слабые кислоты и основания, а также малорастворимые и нерастворимые соединения) например AgCl нерастворим в воде и на ионы не расписывается:

Ag+ + NO3− + Na+ + Cl− = AgCl + Na+ + NO3−

Одинаковые ионы сокращаются и получается сокращенное ионное уравнение. Так как взаимодействие произошло между ионами Ag+ и ионами Cl−, то выражение

Ag+ + Cl− = AgCl

и есть ионное уравнение рассматриваемой реакции. Оно проще молекулярного и в то же время отражает сущность происходящей реакции.

Ионный обмен — это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита

Закон сохранения массы гласит, что количество вещества каждого элемента до реакции равняется количеству вещества каждого элемента после реакции. Таким образом, левая и правая части химического уравнения должны иметь одинаковое количество атомов того или иного элемента. Химическое уравнение должно быть электронейтрально, то есть сумма зарядов в левой и правой части уравнения в сумме должны давать ноль

18. Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксила OH− в воде или в водных растворах

Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

H2O=H3O+OH

Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации [H+] или [OH?]) найти соответственно концентрации [OH?] или [H+]. Хотя в большинстве случаев для удобства представления пользуются не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами — соответственно, водородным показателем (pH) и гидроксильным показателем (pOH).

Водородный показатель, pH— мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на один литрВ чистой воде при 25 °C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH?]) одинаковы и составляют 10?7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH?] и составляет 10?14 моль?/л? (при 25 °C).

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH?] говорят, что раствор является кислым, а при [OH?] > [H+] — щелочным.

19. Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита.

Если рассматривать соли, как продукты взаимодействия кислот и оснований, можно выделить четыре типа солей и три случая гидролиза.

Соль сильного основания (щелочи) и сильной кислоты (HCl, HClO4, HNO3, H2SO4) гидролизу не подвергается, среда раствора – нейтральная, рН=7.

Соль сильного основания (щелочи) и слабой кислоты (HClO, HNO2, H2S, H2SiO3, H2CO3 включая органические кислоты).

Гидролизуется обратимо по аниону, среда раствора – щелочная, рН>7. СН3СООNа + Н2О----СН3СООН +NaОН

Соль слабого основания (NH3∙H2O, органические амины, нерастворимые гидроксиды металлов) и сильной кислоты гидролизуется обратимо по катиону, среда раствора – кислая, рН<7. FeCl2 + H2O Fe(OH)Cl + HCl.

Соль слабого основания и слабой летучей кислоты гидролизуется обратимо по катиону и аниону. Реакция среды зависит от относительной силы кислоты и основания, но близка к нейтральной. Некоторые соли слабого основания и слабой летучей кислоты (H2S, H2CO3, H2SO3) гидролизуются по катиону и аниону необратимо с образованием соответствующей кислоты и основания. СН3СОO- + NН4+ +Н2О СН3СООН + NН4ОН.

20.В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов  в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов.Электростатическое притяжение между  катионами в растворе и избыточными электронами  на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости   определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую   между металлом и окружающей его водной средой, называют электродным потенциалом.При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация  ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов  из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов.

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и темпера-туры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 оС и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Ео).

Ряд стандартных электродных потенциалов  (напряжений).

Уравнение Нернста

        Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных   электродных потенциалов. Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисля-ется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединений Na, K, ..., встречаются в природе, как в виде соединений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. бу-дет иметь построенный из них гальванический элемент. Зависимость величины электродного потенциала  (Е) от природы металла, активности его ионов в растворе и  температуры  выражается уравнением Нернста

ЕМе  =  ЕоМе  +   RTln(aМеn+)/nF,

 где ЕоМе  – стандартный электродный потенциал металла,  aMen+  – активность ионов металла в растворе.   При стандартной  температуре 25 оС, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения   R ,  T  и  F, получим

ЕМе   =  ЕоМе   +  (0,059/n )lgс.

Например, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов  Zn2+×mH2O  сокращенно обозначим  Zn2+  , тогда            

ЕZn  =  ЕоZn  +  (0,059/n) lg[Zn2+].

Если   [Zn2+] = 1 моль/дм3, то   ЕZn  = ЕоZn.

21. Гальванический элемент - это прибор, который преобразует химическую энергию в электрическую.

Рассмотрим гальванический элемент Даниэля-Якоби, где цинковая и медная пластинки опущены в растворы своих солей, разделенных диафрагмой.

Цинк лучше растворяется в растворах своих солей то есть легче отдает ионы в раствор, чем медь, и поэтому он заряжается отрицательно. На поверхности цинка будет находиться избыток электронов. В то же время медь, обладая меньшей скоростью растворения, заряжается положительно, так как скорость перехода ионов из раствора на поверхность меди больше, чем скорость перехода ионов меди с пластинки в раствор. На поверхности пластинки в результате этого возникает недостаток электронов - пластинка заряжается положительно (рис.1). Если соединить эти пластинки проводником (например, медной проволокой), то избыточная часть электронов, имеющихся в цинке, будет переходить на медную пластинку это приводит к понижению заряда цинковой пластинки и нарушает равновесие двойного электрического слоя. Для восстановления равновесия двойного слоя с пластинки в раствор будет переходить определенное количество цинка. При переходе избыточных электронов с цинковой пластинки на медную положительный заряд последней будет уменьшаться. Для сохранения равновесия в двойном электрическом слое часть положительных ионов из раствора будет выделяться на медной пластинке.

Таким образом, разность в зарядах пластинки, обусловленная переходом электронов с цинковой пластинки на медную, будет восстанавливаться.

В результате возникает самопроизвольно протекающий процесс, сопровождающийся растворением цинковой пластинки и выделением на медной пластинке положительно заряженных ионов меди и их разрядкой. Это направленное течение электронов по проводнику и представляет электрический ток, который можно измерить при помощи соответствующих приборов.

Электрический ток, определяемый разностью потенциалов между электродами в таких обратимых условиях их работы, называется электродвижущей силой элемента.

22. Электро́лиз — это физико-химическое явление, состоящее в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, которое возникает при прохождении электрического тока через раствор либо расплав электролита.

1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl-

K «катод»(-): Na+ + 1e = Na0

A «анод»(+): Cl- - 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl → (электролиз) 2Na + Cl2

2.Соль активного металла и кислородосодержащей кислоты

Na2SO4↔2Na++SO42-

K(-): 2Na+ +2e =2Na0

A(+): 2SO42- -4e =2SO3+O2

Вывод: 2Na2SO4 → (электролиз) 4Na + 2SO3 + O2

3. Гидроксид: активный металл и гидроксид-ион

NaOH ↔ Na+ + OH-

K(-): Na+ +1e =Na0

A(+): 4OH- -4e =2H2O + O2

Вывод: 4NaOH → (электролиз) 4Na + 2H2O + O2

23. 1) Активные металлы

1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl-

K«катод»(-): 2H2O + 2e = H2 + 2OH-

A«анод»(+): Cl- - 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl (электролиз) → 2H2 + Cl2 +2NaOH

2.Соль активного металла и кислородсодержащей кислоты

Na2SO4↔2Na++SO42-

K(-): 2H2O + 2e = H2 + OH-

A(+): 2H2O - 4e = O2 + 4H+

Вывод: 2Na2SO4 (электролиз) → H2 + O2

3. Гидроксид: активный металл и гидроксид-ион

NaOH ↔ Na+ + OH-

K(-): 2H2O + 2e = H2 + OH-

A(+): 4OH- - 4e = 2H2O + O2

Вывод: 4NaOH (электролиз) → H2 + O2

2) Менее активные металлы

1.Соль менее активного металла и бескислородной кислоты

ZnCl2 ↔ Zn2+ + 2Cl−

K«катод»(-): Zn2+ + 2e = Zn0

A«анод»(+): 2Cl− - 2e = 2Cl0

Вывод: ZnCl2 (электролиз) → Zn + Cl2

2.Соль менее активного металла и кислородсодержащей кислоты

ZnSO4 ↔ Zn2++SO42−

K(-): Zn2+ + 2e = Zn0

A(+): 4OH− - 4e = 2H2O + O2

Вывод: ZnSO4 (электролиз) → Zn + 2H2O + O2

3. Гидроксид: невозможно (нерастворим)

3) Неактивные металлы

Точь-в-точь так же

24. Основные виды коррозии

Коррозия – это процесс разрушения металлов под воздействием электрохимических или химических факторов окружающей среды. Соответственно, различают два типа коррозии, в зависимости от способа взаимодействия с окружающей средой и механизму протекания процесса окисления. Это химическая коррозия и электрохимическая коррозия.

Под термином «химическая коррозия» понимают процессы, протекающие без участия электрического тока. В процессе химической коррозии на поверхности металла образуются различные химические соединения в виде пленок (оксида, сульфиды и др.) Пример химической коррозии – нагрев стали для термической обработки или обработки давлением.

Иногда пленка, образовавшаяся на металле в результате процесса химической коррозии, служит препятствием для дальнейшего разрушения металла. Это происходит, например, у таких металлов, как свинец, олово, алюминий, никель и хром. На их поверхности образуется плотная пленка оксида. На поверхности стали и чугуна пленка образуется непрочная, тонкая, она растрескивается и ведет к дальнейшей коррозии.

Процесс электрохимической коррозии протекает в присутствии электрического тока. Примеры такого типа коррозии – появление ржавчины на корпусах судов, стальной арматуре гидравлических сооружений, под воздействием атмосферных осадков.

Принципиально резкого отличия между механизмами протекания химической и электрохимической коррозии нет. Процесс химической коррозии может плавно перейти к электрохимической, и наоборот, а также носить двоякий характер, как это бывает при электролизе.

газовая (протекает в присутствии газов при высокой температуре),

неэлектролитическая (сталь в бензине),

атмосферная (металлические детали и конструкции на воздухе),

электролитическая (в жидкой среде под воздействием электрического тока),

почвенная (разрушение металлических труб , толстостенных стальных труб под землей),

электрокоррозия (под воздействием внешних токов),

контактная (разные виды металлов в электролите)

структурная (неоднородные по структуре металлы, например чугун и графит в растворе серной кислоты)

коррозия напряжения (снижение выносливости металла, вызывающее так называемую коррозионную усталость)

коррозия трения (вращающиеся детали машин в морской воде)

щелевая коррозия (протекает в зазорах между деталями механизмов)

биокоррозия (под воздействием микроорганизмов и биологических факторов) Почвенная коррозия – разрушение металла в почве. Ежегодные потери металла вследствии протекания почвенной коррозии достигают 4%.

Почвенной коррозии подвергаются различного назначения трубопроводы, резервуары, сваи, опоры, кабеля, обсадные трубы скважин, всякого рода металлоконструкции, эксплуатируемые в почве.

Почва – очень агрессивная среда. Она состоит из множества химических соединений и элементов, многие из них только ускоряют коррозионный процесс. Агрессивность почвы (грунта) зависит от некоторых факторов: влажность, аэрация, пористость, рН, наличие растворенных солей, электропроводность.

Классификация грунтов по коррозионной активности:

- высококоррозионные грунты (тяжелые глинистые, которые длительное время удерживают влагу);

- среднекоррозионные грунты;

- практически инертные грунты в коррозионном отношении (песчаные почвы).

Методы защиты от почвенной коррозии

Защиту от почвенной коррозии можно разделить на активную (электрохимическую) и пассивную (изоляция изделия от воздействия окружающей среды, специальные способы укладки и т.д.).

Для защиты металлоизделий от почвенной коррозии применяются самые разнообразные методы. Очень часто, особенно в высококоррозионых грунтах, применяют комплексную защиту от подземной коррозии.

Основные методы защиты металлоконструкций от почвенной коррозии: нанесение защитных покрытий и изоляция изделий, создание искусственной среды, электрохимическая защита, применение специальных методов укладки.

Легирование металлов. Добавление в сталь небольшого количества никеля, хрома, алюминия, титана (переводят поверхность стали в пассивное состояние), меди (катодная добавка), фосфора тормозят анодную реакцию. Нанесение металлических или неметаллических покрытий. Неметаллическими защитными покрытиями могут выступать различные смазки, пасты, лакокрасочные материалы. Иногда поверхность превращают в труднорастворимый оксид или фосфат, обладающий защитными свойствами. Металлическими покрытиями служат цинковые, никелевые, многослойные. При осушке воздуха или повышении температуры затрудняется конденсация влаги на металле, что приводит к значительному уменьшению скорости коррозии.

25. Жесткость воды и способы ее устранения

Так как кальций широко распространен в природе, его соли в большом количестве содержатся в природных водах. Вода, имеющая в своем составе соли магния и кальция, называется жесткой водой. Если соли присутствуют в воде в небольших количествах или отсутствуют, то вода называется мягкой. В жесткой воде мыло плохо пенится, поскольку соли кальция и магния образуют с ним нерастворимые соединения. В ней плохо развариваются пищевые продукты. При кипячении на стенках паровых котлов образуется накипь, которая плохо проводит теп-лоту, вызывает увеличение расхода топлива и изнашивание стенок котла. Жесткой водой нельзя пользоваться, проводя ряд технологических процессов (крашение). Образование накипи: Са + 2НСО3 = Н2О + СО2 + СаСО3?.

Перечисленные выше факторы указывают на необходимость удаления из воды солей кальция и магния. Процесс удаления этих солей называется водоумягчением, является одной из фаз обработки воды (водоподготовки).

Водоподготовка – обработка воды, используемая для различных бытовых и технологических процессов.

Жесткость воды подразделяется на:

1) карбонатную жесткость (временную), которая вызывается наличием гидрокарбонатов кальция и магния и устраняется с помощью кипячения;

2) некарбонатную жесткость (постоянную), которая вызывается присутствием в воде сульфитов и хлоридов кальция и магния, которые при кипячении не удаляются, поэтому она называется постоянной жесткостью.

Способы устранения жесткости воды

В природной воде растворены соли кальция и магния. Это гидрокарбонаты и сульфаты. Покажем два способа осаждения гидрокарбонатов для уменьшения жесткости воды. Первый способ – кипячение. При кипячении* растворимые гидрокарбонаты переходят в нерастворимые карбонаты, и жесткость воды уменьшается.

Сa(HCO3)2 = CaCO3 ↓ + H2O + CO2↑

Второй способ – добавление известковой воды. При добавлении известковой воды гидрокарбонаты переходят в карбонаты и вода становится более мягкой.

Сa(HCO3)2+ Ca(OH)2 = CaCO3 ↓ +2 H2O

Но жесткость воды зависит еще и от сульфатов кальция и магния. Сульфаты кальция и магния можно удалить с помощью карбоната натрия. При добавлении карбоната натрия сульфаты переходят в нерастворимые карбонаты кальция и магния.

CaSO4 + Na2CO3= CaCO3 ↓+ Na2SO4

Теперь мы знаем, как уменьшить жесткость воды. Накипь внутри чайника ‑ это осадок карбонатов кальция и магния с примесью сульфата кальция. Накипь можно удалить со стенок, используя разбавленный раствор уксусной кислоты.

Обратный осмос. Метод основан на прохождении воды через полупроницаемые мембраны (как правило, полиамидные). Вместе с солями жёсткости удаляется и большинство других солей. Эффективность очистки может достигать 99,9 %. Этот метод нашёл наибольшее применение в бытовых системах подготовки питьевой воды. В качестве недостатка данного метода следует отметить необходимость предварительной подготовки воды, подаваемой на обратноосмотическую мембрану.

Окислительно-восстановительные реакции (ОВР) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление - процесс отдачи электронов, с увеличением степени окисления. При окислении вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов. Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель.

Восстановлением называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается. При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель.

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).