Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

merged

.pdf
Скачиваний:
10
Добавлен:
01.03.2016
Размер:
10.39 Mб
Скачать

1) БД як динамічна інформаційна модель предметної області. Поняття «об’єкт», «атрибут».

База данных – совокупность структурированных, взаимосвязанных, динамически обновляемых данных предметной области. Инфологическая модель предметной области представима в виде объектов предметной области и связей между объектами.

Каждый объект можно охарактеризовать атрибутами, на основании которых можно описать предполагаемые экземпляры объектов.

Выделяют следующие виды взаимосвязей между объектами:

«один к одному» (1:1);

«один ко многим» (1:M, M:1);

«многие ко многим» (M:N).

Одним из ключевых моментов создания ИС с целью автоматизации информационных процессов организации является всестороннее изучение объектов автоматизации, их свойств, взаимоотношений между этими объектами и представление полученной информации в виде информационной модели данных.

Информационная модель данных предназначена для представления семантики предметной области в терминах субъективных средств описания - сущностей, атрибутов, идентификаторов сущностей, супертипов, подтипов и т.д.

Информационная модель предметной области базы данных содержит следующие основные конструкции:

диаграммы "сущность-связь" (Entity - Relationship Diagrams);

определения сущностей;

уникальные идентификаторы сущностей ;

определения атрибутов сущностей ;

отношения между сущностями;

супертипы и подтипы.

Предметом информационной модели является абстрагирование объектов или явлений реального мира в рамках предметной области, в результате которого выявляются сущности (entity) предметной области. Как правило, они обозначаются именем существительным естественного языка.

Сущность описывается с помощью данных, именуемых свойствами или атрибутами (attributes) сущности. Как правило, атрибуты являются определениями в высказывании о сущности и обозначаются именами существительными естественного языка. Сущности вступают в связи друг с другом через свои атрибуты. Каждая группа атрибутов, описывающих одно реальное проявление сущности, представляет собой экземпляр (instance) сущности. Иными словами, экземпляры сущности - это реализации сущности, отличающиеся друг от друга и допускающие однозначную идентификацию.

Динамичность базы данных включает в себя изменение значений атрибутов объектов, удаление или добавление объектов в базу данных. Для облегчения подобных операций были созданы СУБД.

СУБД (система управления базами данных) – совокупность программных и синтаксических средств, с помощью которых реализуется централизованное управление базами данных, доступ и взаимодействие баз данных с прикладным ПО.

Для обеспечения автоматизации и унификации обработки данных необходимо данные формализовать. Формализация данных происходит на основе определенной модели данных. Основные модели:

иерархическая, сетевая и реляционная.

Ієрархічна модель даних будується за принципом ієрархії об'єктів, тобто один тип об'єкта є головним, усі інші - підлеглими. Установлюється зв'язок "один до багатьох", тобто для деякого

головного типу існує кілька підлеглих типів об'єктів. Інакше, головний тип іменується вихідним типом, а підлеглі - породженими. У підлеглих типів можуть бути у свою чергу підлеглі типи. Найвищий в ієрархії вузол (сукупність атрибутів) називають кореневим.

Мережна модель даних будується за принципом "головний і підлеглий тип одночасно", тобто будьякий тип даних одночасно може одночасно породжувати кілька підлеглих типів (бути власником набору) і бути підлеглим для декількох головних (бути членом набору).

Реляційна модель дані об'єкти і зв'язки між ними представляються у виді таблиць, при цьому зв'язки теж розглядаються як об'єкти. Усі рядки, що складають таблицю в реляційній базі даних повинні мати первинний ключ. Усі сучасні засоби СУБД підтримують реляційну модель даних.

Об'єкт (Сутність) - елемент якої-небудь системи, інформація про яке зберігається. Об'єкт може бути як реальним (наприклад - людина), так і абстрактним (наприклад - подія).

Атрибут - інформаційне відображення властивостей об'єкта. Кожен об'єкт характеризується набором атрибутів.

2) Мови, що базуються на реляційній алгебрі. Основні операції та приклади реалізації запитів.

Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.

Языками, базирующимися на реляционной алгебре можно считать языки программирования реляционных баз данных: самым популярным можно считать

SQL.

Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:

объединения отношений;

пересечения отношений;

взятия разности отношений;

прямого произведения отношений.

Специальные реляционные операции включают:

ограничение отношения;

проекцию отношения;

соединение отношений;

деление отношений.

Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.

Переименование

В результате применения операции переименования получаем новое отношение, с измененными именами атрибутов.

Синтаксис:

R RENAME Atr1, Atr2, … AS NewAtr1, NewAtr2,

где

R — отношение

Atr1, Atr2, … — исходные имена атрибутов

NewAtr1, NewAtr2, … — новые имена атрибутов

Объединение

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих или A, или B, или обоим отношениям.

Синтаксис:

A UNION B

Пересечение

Отношение с тем же заголовком, что и у отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B.

Синтаксис:

A INTERSECT B

Вычитание

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих отношению A и не принадлежащих отношению B.

Синтаксис:

A MINUS B

Декартово произведение

Отношение (A1, A2, …, Am, B1, B2, …, Bm), заголовок которого является сцеплением заголовков отношений A(A1, A2, …, Am) и B(B1, B2, …, Bm), а тело состоит из кортежей, являющихся сцеплением кортежей отношений A и B:

(a1, a2, …, am, b1, b2, …, bm)

таких, что

(a1, a2, …, am) A,

(b1, b2, …, bm) B.

Синтаксис:

A TIMES B

Выборка (ограничение)

Отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие c дают значение ИСТИНА. c представляет собой логическое выражение, в

которое могут входить атрибуты отношения A и/или скалярные выражения.

Синтаксис:

A WHERE c

Проекция

При выполнении проекции выделяется «вертикальная» вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.

Синтаксис:

A[X, Y, …, Z]

или

PROJECT A {x, y, …, z}

Соединение

Операция соединения отношений A и B по предикату P логически эквивалентна последовательному применению операций декартового произведения A и B и выборки по предикату P. Если в отношениях имеются атрибуты с одинаковыми наименованиями, то перед выполнением соединения такие атрибуты необходимо переименовать.

Синтаксис:

(A TIMES B) WHERE P

Деление

Отношение с заголовком (X1, X2, …, Xn) и телом, содержащим множество кортежей (x1, x2, …, xn), таких, что для всех кортежей (y1, y2, …, ym) B в отношении A(X1, X2, …, Xn, Y1, Y2, …, Ym) найдется кортеж (x1, x2, …, xn, y1, y2,

…, ym).

Синтаксис:

A DIVIDEBY B

1) Класифікація видів СКБД та їхні особливості.

Систе́ма управле́ния ба́зами да́нных (СУБД) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

По модели данных

Иерархические - это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможна ситуация, когда объект-предок не имеет потомков или имеет их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами (в программировании применительно к структуре данных дерево устоялось название братья).

Сетевые - логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных. Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

Реляционные - логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики, как теория множеств и логика первого порядка. Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране.

Объектно-ориентированные - система управления базами данных, основанная на объектной модели данных. Эта система управления обрабатывает данные как абстрактные объекты, наделённые свойствами и использующие методы взаимодействия с другими объектами окружающего мира.

Объектно-реляционные - реляционная СУБД (РСУБД), поддерживающая некоторые технологии, реализующие объектно-ориентированный подход: объекты, классы и наследование реализованы в структуре баз данных и языке запросов.

Объектно-реляционными СУБД являются, например, широко известные Oracle Database, Informix, DB2, PostgreSQL.

По степени распределённости

Локальные СУБД (все части локальной СУБД размещаются на одном компьютере)

Распределённые СУБД (части СУБД могут размещаться на двух и более компьютерах).

По способу доступа к БД

Файл-серверные

В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. СУБД располагается на каждом клиентском компьютере (рабочей станции). Доступ СУБД к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок.

Преимуществом этой архитектуры является низкая нагрузка на процессор файлового сервера.

Недостатки: потенциально высокая загрузка локальной сети; затруднённость или невозможность централизованного управления; затруднённость или невозможность обеспечения таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность. Применяются чаще всего в локальных приложениях, которые используют функции управления БД; в системах с низкой интенсивностью обработки данных и низкими пиковыми нагрузками на БД.

На данный момент файл-серверная технология считается устаревшей, а её использование в крупных информационных системах — недостатком[2].

Примеры: Microsoft Access, Paradox, dBase, FoxPro, Visual FoxPro.

Клиент-серверные

Клиент-серверная СУБД располагается на сервере вместе с БД и осуществляет доступ к БД непосредственно, в монопольном режиме. Все клиентские запросы на обработку данных обрабатываются клиент-серверной СУБД централизованно.

Недостаток клиент-серверных СУБД состоит в повышенных требованиях к серверу.

Достоинства: потенциально более низкая загрузка локальной сети; удобство централизованного управления; удобство обеспечения таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность.

Примеры: Oracle, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР.

Встраиваемые

Встраиваемая СУБД — СУБД, которая может поставляться как составная часть некоторого программного продукта, не требуя процедуры самостоятельной установки. Встраиваемая СУБД предназначена для локального хранения данных своего приложения и не рассчитана на коллективное использование в сети. Физически встраиваемая СУБД чаще всего реализована в

виде подключаемой библиотеки. Доступ к данным со стороны приложения может происходить через SQL либо через специальные программные интерфейсы.

Примеры: OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Microsoft SQL Server Compact, ЛИНТЕР.

.

2) Мови, що базуються на реляційному обчисленні. Основні операції та приклади реалізації запитів.

Языки: QUEL, QBE, SQUARE, SEQUEL

Реляционное исчисление является прикладной ветвью формального механизма исчисления предикатов первого порядка. Базисными понятиями исчисления являются понятие переменной с определенной для нее областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. В зависимости от того, что является областью определения переменной, различаются исчисление кортежей и исчисление доменов. В исчислении кортежей областями определения переменных являются отношения базы данных, т.е. допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены, на которых определены атрибуты отношений базы данных, т.е. допустимым значением каждой переменной является значение некоторого домена. Мы рассмотрим более подробно исчисление кортежей, а в конце лекции коротко опишем особенности исчисления доменов. В отличие от раздела, посвященного реляционной алгебре, в этом разделе нам не удастся избежать использования некоторого конкретного синтаксиса, который мы, тем не менее, формально определять не будем. Необходимые синтаксические конструкции будут вводиться по мере необходимости. В совокупности, используемый синтаксис близок, но не полностью совпадает с синтаксисом языка баз данных QUEL, который долгое время являлся основным языком СУБД

Ingres.

Для определения кортежной переменной используется оператор RANGE. Например, для того, чтобы определить переменную СОТРУДНИК, областью определения которой является отношение СОТРУДНИКИ, нужно употребить конструкцию

RANGE СОТРУДНИК IS СОТРУДНИКИ

Как мы уже говорили, из этого определения следует, что в любой момент времени переменная СОТРУДНИК представляет некоторый кортеж отношения СОТРУДНИКИ. При использовании кортежных переменных в формулах можно ссылаться на значение атрибута переменной (это аналогично тому, как, например, при программировании на языке Си можно сослаться на значение поля структурной переменной). Например, для того, чтобы сослаться на значение атрибута СОТР_ИМЯ переменной СОТРУДНИК, нужно употребить конструкцию СОТРУДНИК.СОТР_ИМЯ.

Правильно построенные формулы (WFF - Well-Formed Formula) служат для выражения условий, накладываемых на кортежные переменные. Основой WFF являются простые сравнения (comparison), представлющие собой операции сравнения скалярных значений (значений атрибутов переменных или литерально заданных констант). Например, конструкция

"СОТРУДНИК.СОТР_НОМ = 140"

является простым сравнением. По определению, простое сравнение является WFF, а WFF, заключенная в круглые скобки, является простым сравнением. Более сложные варианты WFF строятся с помощью логических связок NOT, AND, OR и IF ... THEN. Так, если form - WFF, а comp - простое сравнение, то NOT form, comp AND form, comp OR form и IF comp THEN form

являются WFF. Наконец, допускается построение WFF с помощью кванторов. Если form - это WFF, в которой участвует переменная var, то конструкции EXISTS var (form) и FORALL var (form) представляют wff. Переменные, входящие в WFF, могут быть свободными или связанными. Все переменные, входящие в WFF, при построении которой не использовались кванторы, являются свободными. Фактически, это означает, что если для какого-то набора значений свободных кортежных переменных при вычислении WFF получено значение true, то эти значения кортежных переменных могут входить в результирующее отношение. Если же имя переменной использовано сразу после квантора при построении WFF вида EXISTS var (form) или FORALL var (form), то в этой WFF и во всех WFF, построенных с ее участием, var - это связанная переменная. Это означает, что такая переменная не видна за пределами минимальной WFF, связавшей эту переменную. При вычислении значения такой WFF используется не одно значение связанной переменной, а вся ее область определения. Пусть СОТР1 и СОТР2 - две кортежные переменные, определенные на отношении СОТРУДНИКИ. Тогда, WFF

EXISTS СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если во всем отношении СОТРУДНИКИ найдется кортеж (связанный с переменной СОТР2) такой, что значение его атрибута СОТР_ЗАРП удовлетворяет внутреннему условию сравнения.

WFF

FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если для всех кортежей отношения СОТРУДНИКИ (связанных с переменной СОТР2) значения атрибута СОТР_ЗАРП удовлетворяет условию сравнения. На самом деле, правильнее говорить не о свободных и связанных переменных, а о свободных и связанных вхождениях переменных. Легко видеть, что если переменная var является связанной в WFF form, то во всех WFF, включающих данную, может использоваться имя переменной var, которая может быть свободной или связанной, но в любом случае не имеет никакого отношения к вхождению переменной var в WFF form. Вот пример:

EXISTS СОТР2 (СОТР1.СОТР_ОТД_НОМ = СОТР2.СОТР_ОТД_НОМ) AND FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

Здесь мы имеем два связанных вхождения переменной СОТР2 с совершенно разным смыслом.

Примеры запросов:

1)

range of E is EMPLOYEE retrieve into W

(COMP = E.Salary / (E.Age - 18)) where E.Name = "Jones"

SQL эквивалент:

select (e.salary / (e.age - 18)) as comp from employee as e

where e.name = "Jones"

2)

create student(name = c10, age = i4, sex = c1, state = c2) range of s is student

append to s (name = "philip", age = 17, sex = "m", state = "FL") retrieve (s.all) where s.state = "FL"

replace s (age=s.age+1) retrieve (s.all)

delete s where s.name="philip"

SQL эквивалент:

create table student(name char(10), age int, sex char(1), state char(2)) insert into student (name, age, sex, state) values ("philip", 17, "m", "FL") select * from student where state = "FL"

update student set age=age+1

select * from student

delete from student where name="philip"

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 3

1.Основні критерії при виборі СКБД.

1.Используемые ОС

2.Возможности создания БД

3.Возможности ввода и редактирования данных

4.Возможности по выборке данных

5.Возможности сортировки и индексации

6.Средства обеспечения надежности

7.Многопользовательский доступ

8.Возможности export\import данных

9.Средства администрирования СУБД

10.Оценка производительности

2. Операція вибірки SELECT. Запити до однієї таблиці.

Все запросы на получение практически любого количества данных из одной или нескольких таблиц выполняются с помощью единственного предложения SELECT. В общем случае результатом реализации предложения SELECT является другая таблица. К этой новой (рабочей) таблице может быть снова применена операция SELECT и т.д., т.е. такие операции могут быть вложены друг в друга. Представляет исторический интерес тот факт, что именно возможность включения одного предложения SELECT внутрь другого послужила мотивировкой использования прилагательного "структурированный" в названии языка SQL.

Инструкция SELECT используется в основном как:

самостоятельная команда на получение и вывод строк таблицы, сформированной из столбцов и строк одной или нескольких таблиц (представлений);

элемент другого запроса, называемый «вложенный запрос»;

фраза выбора в командах создания представления, курсора или вставки;

средство присвоения переменным значений из строк сформированной таблицы.

Вэтой работе рассматриваются только два первых варианта использования SELECT и его синтаксис, ограниченный конструкциями, используемыми при реализации

этих вариантов, а остальные в последующих работах практикума.

Здесь и далее в синтаксических конструкциях используются следующие обозначения:

звездочка (*) для обозначения "все" - употребляется в обычном для программирования смысле, т.е. "все случаи, удовлетворяющие определению";

квадратные скобки ([]) – означают, что конструкции,

заключенные в эти скобки, являются необязательными (т.е. могут быть опущены);

фигурные скобки ({}) – означают, что конструкции, заключенные в эти скобки, должны рассматриваться как целые синтаксические единицы, т.е. они позволяют уточнить порядок разбора синтаксических конструкций, заменяя обычные скобки, используемые в синтаксисе SQL;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]