Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Svoystva_elektrona

.docx
Скачиваний:
29
Добавлен:
02.03.2016
Размер:
60.49 Кб
Скачать

Электроны в атоме.

В соответствии с электронной теорией все окружающие нас вещества состоят из мельчайших частиц – атомов.

Атом, в свою очередь состоим из более мелких частиц, основными из которых являются протоны, нейтроны и электроны.

Протоны имеют положительный электрический заряд,

электроны – отрицательный, равный по величине заряду протона,

нейтроны электрически нейтральны, их заряд равен нулю.

Протоны и нейтроны образуют ядро, в котором сосредоточена практически вся масса атома. Вокруг ядра под влиянием его притяжения движутся по определенным замкнутым орбитам отрицательно заряженные электроны.

В нормальном состоянии атом содержит одинаковое количество протонов и электронов и поэтому электрически нейтрален.

Количество протонов, нейтронов и электронов в атоме зависит от типа химического элемента составной частью, которого он является. Например, в атоме водорода вокруг ядра вращается только один электрон, в атоме меди – 29, в атоме золота – 79.

Число электронов вращающихся вокруг ядра, всегда равно порядковому номеру элемента в периодической системе элементов Д.И.Менделеева. Например, атом 92-го элемента таблицы (урана) имеет 92 электрона, вращающихся вокруг ядра по многочисленным орбитам.

Вращающиеся в атоме электроны, которые расположены на внешних орбитах, связаны с ядром слабее, чем электроны, находящиеся на внутренних, близких к ядру орбитах. Поэтому под действием соседних атомов или вследствие других причин внешние электроны могут покинуть свою орбиту, что повлечет за собой изменение электрического состояния атома.

Электроны, расположенные на внешних орбитах атомов, называются валентными электронами. Они определяют химическую активность вещества, т.е. участвуют в создании химической связи между атомами.

Электроны, освободившиеся от внутриатомных связей, получили название свободных электронов. Они перемещаются внутри вещества между атомами в различных направлениях и с различными скоростями.

При наличии внешнего электрического поля беспорядочное движение свободных электронов становится упорядоченным, направленным. В результате − возникает электрический ток.

Чем больше свободных электронов имеет вещество, тем выше его электропроводность. Этим и объясняется хорошая проводимость металлов, а также деление твердых тел по способности их проводить электрический ток на проводники, полупроводники и диэлектрики.

Теряя или приобретая электроны, нейтральный в электрическом отношении атом становится заряженным. Такой атом называется ионом. Процесс отрыва электронов от атома или присоединения к атому лишнего электрона в результате, которого образуется положительный или отрицательный ион, носит название ионизации атома. Ионы, имеющие разноименные заряды, притягиваясь, друг к другу, образуют молекулы.

1.2. Работа выхода электронов

Для работы электронных приборов необходимы свободные электроны. Только в этом случае они смогут выполнять функции электрического тока. Как получить такие электроны? Задача заключается лишь в том, чтобы оторвать их от ядра и при необходимости извлечь из вещества. Но оказывается это возможно лишь при выполнении определенных условий, речь о которых и пойдет ниже.

При температуре абсолютного нуля (Т = 0 К) и отсутствии других источников возбуждения электроны в атомах любого вещества занимают уровни с наименьшей энергией. В проводниках, обладающих высокой концентрацией электронов в зоне проводимости, распределение электронов по величинам энергии можно изобразить графиком, названным распределением Ферми. По оси абсцисс отложено значение энергии, а по оси ординат – количество электронов. Из графика рис, 1.4, (кривая 1) видно, что при температуре абсолютного нуля нет электронов, обладающих энергией, большей WF (уровень Ферми).

Величина WF зависит от физических свойств материала и определяется выражением

где hпостоянная планка; me - масса электрона; Nчисло свободных электронов в 1 кубическом см проводника.

В металлах N1022 …1023. Максимальная энергия WF электронов внутри металла достигает десятков электрон-вольт. Однако выход электронов за поверхность металла при температуре абсолютного нуля и отсутствии внешних воздействий (освещение поверхности проводника, бомбардировка пучком электронов и т.п.) не наблюдается. Это объясняется двумя причинами.

Во-первых, те немногие электроны, которые выходят за пределы проводника, теряют большую часть своей энергии и накапливаются на поверхности металла. Между этими электронами и положительными ионами, находящимися внутри металла у его поверхности, образуется электрическое поле, направленное от проводника к слою электронов. Совокупность положительных ионов у поверхности металла и электронов, появляющихся над поверхностью, называется двойным электрическим слоем.

Действие двойного электрического слоя на электроны, стремящиеся покинуть пределы металла, является тормозящим, так как этим электронам приходится лететь по направлению электрических силовых линий и отдавать свою энергию полю.

Во-вторых, если некоторое количество электронов все же выйдет за пределы металла, то металл будет обратно их притягивать. Объясняется это тем, что металл, лишенный части электронов, заряжается положительно и, следовательно, между ним и вылетевшими электронами возникает электрическое поле, препятствующее выходу новых электронов.

Таким образом, для отрыва от поверхности проводника электроны должны затратить работу против электрических сил, возвращающих их обратно, т.е. некоторую полную энергию

Wa = WF + W0 1.8

Величина W0 называется работой выхода. Работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона e на пройденную разность потенциалов φo. Поэтому

W0 = Wa - WF = eφ0. 1.9

Эта работа измеряется в электрон-вольтах.

Величина работы выхода твердых тел зависит от их структуры и является физической характеристикой тела.

Чем меньше у данного проводника работа выхода, тем меньше должна быть затрата энергии для получения свободных электронов вне этого проводника.

Выход возможен также из полупроводников и диэлектриков. Однако при этом работа затрачивается не только на преодоление тормозящих электрических сил, но и на возбуждение электронов, переходящих из валентной зоны в зону проводимости.

Полная работа выхода полупроводников

eφ = i + 0 1.10

Где еφi - работа, затрачиваемая на перевод электронов из валентной зоны в зону проводимости;

еφ0 - работа, необходимая для выхода электронов проводимости за поверхность полупроводника.

Энергетическая диаграмма, иллюстрирующая процесс выхода электронов из полупроводника приведена на рис. 1.7. У некоторых примесных полупроводников работа выхода может быть очень малой – порядка 1 эВ.

Таким образом, если электронам металлов или полупроводников сообщается извне дополнительная энергия, то выход электронов из тела оказывается возможным – происходит электронная эмиссия.

Поток свободных электронов в электровакуумных и ионных (газоразрядных) приборах возникает из металлического или полупроводникового электрода – катода. Чтобы электроны могли выйти за пределы катода, необходимо сообщить им извне некоторую энергию, достаточную для преодоления противодействующих сил. В зависимости от способа сообщения электронам добавочной энергии различают такие виды электронной эмиссии:

термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;

фотоэлектронную, при которой на поверхность катода воздействует электромагнитное излучение;

вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;

электростатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.

1.3. Движение электронов в электрическом и магнитном полях

Управление движением свободных электронов в большинстве электронных приборов осуществляется с помощью электрических или магнитных полей. В чем состоит сущность этих явлений?

Электрон в электрическом поле. Взаимодействие движущихся электронов с электрическим полем – основной процесс, происходящий в большинстве электронных приборов.

Наиболее простым случаем является движение электрона в однородном электрическом поле, т.е. в поле, напряженность которого одинакова в любой точке, как по величине, так и по направлению. На рисунке показано однородное электрическое поле, созданное между двумя параллельными пластинами достаточно большой протяженности, чтобы пренебречь искривлением поля у краев. На электрон, как и на любой заряд, помещенный в электрическое поле с напряженностью Е, действует сила, равная произведению величины заряда на напряженность поля в месте нахождения заряда,

F = -eE. 1.11

Знак минус показывает, что вследствие отрицательного заряда электрона сила имеет направление, противоположное направлению вектора напряженности электрического поля. Под действием силы F электрон двигается навстречу электрическому полю, т.е. перемещается в сторону точек с более высоким потенциалом. Поэтому поле в данном случае является ускоряющим.

Работа, затраченная электрическим полем на перемещение заряда из одной точки в другую, равна произведению величины заряда на разность потенциалов между этими точками, т.е. для электрона

где U - разность потенциалов между точками 1 и 2. Эта работа затрачивается на сообщение электрону кинетической энергии

где V и V0 - скорости электрона в точках 2 и 1. приравнивая равенства (1.12) и (1.13), получаем

Если начальная скорость электрона V0 = 0, то

Отсюда можно определить скорость электрона в электрическом поле при разности потенциалов U:

Таким образом, скорость, приобретенная электроном при движении в ускоряющем поле, зависит только от пройденной разности потенциалов. Из формулы (1.17) видно, что скорости электронов, даже при сравнительно небольшой разности потенциалов, получаются значительными. Например, при U = 100 В получаем V = 6000 км/с. При такой большой скорости электронов все процессы в приборах, связанные с движением электронов, протекают очень быстро. Например, время, необходимое для пролета электронов между электродами в электронной лампе, составляет доли микросекунды. Именно поэтому работа большинства электронных приборов может считаться практически безинерционной.

Рассмотрим теперь движение электрона, у которого начальная скорость Vo направлена против силы F, действующей на электрон со стороны поля (Рис. 1.8, б). В этом случае электрическое поле является для электрона тормозящим. Скорость движения электрона и его кинетическая энергия в тормозящем поле уменьшаются, так как в данном случае работа совершается не силами поля, а самим электроном, который за счет своей энергии преодолевает сопротивление сил поля. Энергия, теряемая электроном, переходит к полю. Действительно, поскольку движение электрона в тормозящем поле означает его перемещение в направлении отрицательного полюса источника поля, то при приближении электрона к последнему суммарный отрицательный заряд увеличивается и соответственно увеличивается энергия поля. В тот момент, когда электрон полностью израсходует свою кинетическую энергию, его скорость окажется равной нулю, и затем электрон начнет движение в обратном направлении. Движение его в обратном направлении является не чем иным, как рассмотренным выше движением без начальной скорости в ускоряющем поле. При таком движении электрона поле возвращает ему ту энергию, которую он потерял при своем замедленном движении.

В рассмотренных выше случаях направление скорости движения электрона было параллельным направлению электрических силовых линий поля. Такое электрическое поле называется продольным. Поле, направленное перпендикулярно вектору начальной скорости электрона, называется поперечным.

Рассмотрим вариант, когда электрон влетает в электрическое поле с некоторой начальной скоростью Vo и под прямым углом к направлению электрических силовых линий (рис. 1.8, в). Поле действует на электрон с постоянной силой, определяемой по формуле (1.11) и направленной в сторону более высокого положительного потенциала. Под действием этой силы электрон приобретает скорость V1, направленную навстречу полю. В результате электрон совершает одновременно два взаимно перпендикулярных движения: прямолинейное равномерное по инерции со скоростью V0 и прямолинейно

равномерно ускоренное со скоростью V1. Под влиянием этих двух взаимно перпендикулярных скоростей электрон будет двигаться по траектории, представляющей собой параболу. После выхода из электрического поля электрон будет двигаться по инерции прямолинейно.

Электрон в магнитном поле. Влияние магнитного поля на движущийся электрон можно рассматривать как действие этого поля как на проводник с током. Движение электрона с зарядом е и скоростью V эквивалентно току i, проходящему через элементарный отрезок проводника длиной Δl.

Согласно основным законам электромагнетизма сила, действующая в магнитном поле на провод длиной Δl с током i равна

F = BiΔlsinα. (1.20)

где В - магнитная индукция; α угол между направлением тока и магнитной силовой линией поля.

Используя соотношение (1.18), получим новое выражение, характеризующее силу воздействия магнитного поля на движущийся в нем электрон,

F = BeVsinα. (1.21)

Из этого выражения видно, что электрон, движущийся вдоль силовых линий магнитного поля (α = 0), не испытывает никакого воздействия поля (F = BeVsin0 = 0) и продолжает перемещаться с заданной ему скоростью.

Если вектор начальной скорости электрона перпендикулярен вектору магнитной индукции, т.е. α = 90, то сила, действующая на электрон,

F = BeV. (1.22)

Направление этой силы определяется по правилу левой руки. Сила F всегда перпендикулярна направлению мгновенной скорости V электрона и направлению магнитных силовых линий поля. В соответствии со вторым законом Ньютона эта сила сообщает электрону с массой me ускорение, равное . Поскольку ускорение перпендикулярно скорости V, то электрон под действием этого нормального (центростремительного) ускорения будет двигаться по окружности, лежащей в плоскости, перпендикулярной к силовым линия поля.

В общем случае начальная скорость электрона может быть неперпендикулярна к магнитной индукции. В данном случае траекторию движения электрона определяют две составляющие начальной скорости:

нормальная V1 и касательная V2, первая из которых направлена перпендикулярно силовым линиям магнитного поля, а вторая параллельно им. Под действием нормальной составляющей электрон движется по окружности, а под действие касательной – перемещается вдоль силовых линий поля рис. 1.9.

В результате одновременного действия обеих составляющих траектория движения электрона принимает вид спирали. Рассмотренная возможность изменения траектории движения электрона с помощью магнитного поля используется для фокусировки и управления электронным потоком в электронно-лучевых трубках и других приборах.

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]