Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
01-12-2014_08-56-06 / Глава 3 Теория одиночного снимка (17 12).doc
Скачиваний:
91
Добавлен:
02.03.2016
Размер:
423.42 Кб
Скачать

Глава 3. Теория одиночного снимка

1 .Системы координат снимка. Элементы внутреннего ориентирования снимка.

На каждом снимке имеются изображения координатных меток, которые определяют правую прямоугольную систему координат снимка o’xyz.

О

Рис. 3.1

сь х этой системы проходит через координатные метки 1-2 и направлена приблизительно по направлению полета. Началом системы координат является точка о’, получаемая в результате пересечения оси х с линией проведенной через координатные метки 3 и 4. Осьy лежит в плоскости снимка Р и перпендикулярна оси х. Ось z дополняет систему до правой.

Любая точка снимка, например m, имеет в этой системе координат координаты m(х,у,z =0). Центр проекции S имеет в этой системе координаты S ( x=x0, y=y0, z=f ).

f-фокусное расстояние снимка, а х0 и у0 – координаты главной точки снимка-О.

Для восстановления связки проектирующих лучей, сформировавших снимок в системе координат снимка o’xyz, необходимо для каждой точки снимка определить координаты вектора в этой системе координат по измеренным на снимке координатам точки m.

(3.1).

Из выражения (3.1) следует , что для восстановления связки проектирующих лучей, необходимо измерить ординаты точки и знать значения координат центра проекции S в системе координат снимка снимка f , х0 , y0, которые являются постоянными для данного снимка и называются элементами внутреннего ориентирования снимка.

Более широко в фотограмметрии используют систему координат снимка Sxyz , началом которой является центр проекции S , а оси координат параллельны соответствующим осям системы координат o’xyz.

Так как система координат Sxyz параллельна системе координат o’xyz ,то, как известно из аналитической геометрии, координаты векторов в обеих системах координат равны, то есть координаты вектора в системе координат Sxyz определяется выражением (3.1).

2.Системы координат объекта. Элементы внешнего ориентирования снимка.

Положение точек объекта (местности) по снимкам определяют в прямоугольной пространственной системе координат OXYZ . В зависимости от решаемой задачи в качестве этой системы координат используют:

  • государственную картографическую систему координат (в России –

  • Гаусса – Крюгера);

  • геоцентрическую систему координат;

  • произвольную систему координат, связанную с характерными точками

объекта (местности).

Положение и ориентацию системы координат снимка (или, что то же самое – снимка) в системе координат объекта OXYZ определяют элементы внешнего ориентирования снимка.

Положение центра проекции S в системе координат объекта определяют его координаты Xs,Ys,Zs.

Угловая ориентация системы координат снимка относительно системы координат объекта определяется ортогональной матрицей:

(3.2).

В матрице А элементы (направляющие косинусы) аij являются косинусами пространственных углов между осями координат системы координат объекта OXYZ и снимка Sxyz.

Направляющие косинусы являются координатами единичных векторов (ортов), совпадающих с осями координат снимка в системе координат объекта.

Вследствие особых характеристик ортогональной матрицы:

А-1т ;

а ААт =Е=.

В ортогональной матрице независимы только 3 элемента, следовательно элементы матрицы являются функцией 3 параметров. В качестве этих параметров в фотограмметрии используют 3 угла -,и, которые называют угловыми элементами внешнего ориентирования снимка.

Последовательно поворачивая систему координат объекта OXYZ на эти углы вокруг ее осей, можно ориентировать ее параллельно осям системы координат снимка. При этом последовательность и направление вращений могут быть произвольными. Поэтому в фотограмметрии используют различные системы угловых элементов ориентирования снимка.

Рассмотрим наиболее широко используемую систему, в которой система координат объекта OXYZ поворачивается последовательно против часовой стрелки (правые углы) вокруг осей X,Yи Z соответственно на углы , и .

В результате перемножения матриц

,

получим значения элементов aij , как функции углов , и :

(3.3);

Если известны значения направляющих косинусов aij, то из выражений (3.3) можно получить значения углов ,,.

(3.4).