Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ответы к билетам матан 1 семестр docx - 2010 / 45.Знакочередующиеся ряды. Признак Лейбница

.docx
Скачиваний:
251
Добавлен:
08.01.2014
Размер:
20.02 Кб
Скачать

Определение 6. Числовой ряд вида u1-u2+u3-u4+…+     +(-1)n-1.un+…, где un – модуль члена ряда, называется знакочередующимся числовым рядом.

Теорема 1 (признак Лейбница)

Если для знакочередующегося числового ряда

    (19)

Выполняются два условия:

Члены ряда убывают по модулю u1>u2>…>un>…,

то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда.

Доказательство. Рассмотрим частичную сумму чётного числа членов ряда S2n=(u1-u2)+(u3-u4)+…+(u2n-1-u2n).

По условию u1>u2>…>u2n-1>u2n, то есть все разности в скобках положительны, следовательно, S2n возрастает с возрастанием n и S2n>0 при любом n.

С другой стороны S2n=u1-[(u2-u3)+(u4-u5)+…+(u2n-2-u2n-1)+u2n]. Выражение в квадратных скобках положительно и S2n>0, поэтому S2n<u1 для любого n. Таким образом, последовательность частичных сумм S2n возрастает и ограничена, следовательно, существует конечный  S2n=S. При этом 0<Su1.

Рассмотрим теперь частичную сумму нечётного числа членов ряда S2n+1=S2n+u2n+1. Перейдём в последнем равенстве к пределу при n→∞: S2n+1= S2n+ u2n+1=S+0=S. Таким образом, частичные суммы как чётного, так и нечётного числа членов ряда имеют один и тот же предел S, поэтому Sn=S, то есть данный ряд сходится. Теорема доказана.

1