Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Rajesh_Chawla_-_ICU_Protocols_A_stepwise_approa[1].pdf
Скачиваний:
259
Добавлен:
13.03.2016
Размер:
9.49 Mб
Скачать

Appendices

843

 

 

Appendix B

Common ICU Formulae

A.Pulmonary equations

1.Arterial oxygen tension (PaO2)

On room air = 100 − 1/3 (age)

On supplemental oxygen = FiO2 (in decimals) × 500, Room air FiO2 = 21% (0.21), FiO2 increases by approximately 4% for each litre increase in Supplemental Oxygen

2.Alveolar gas equation

 

 

æ PaCO2 ö

 

PAO2

= (FiO2 ´[Patm - PH2O]) - ç

 

÷

 

 

 

 

è R

ø

 

PAO2

= 150 – (1.25 × PaCO2)

 

 

Normal = 100 mmHg (room air, at sea level)

 

 

where PAO2 = alveolar partial pressure of oxygen

 

FiO2 = fraction of inspired oxygen (in decimals)

 

Patm = barometric pressure (760 mmHg at sea level)

 

PH2O = water vapor pressure (47 mmHg at normal body temperature 37°C)

 

PaCO2 = partial pressure of carbon dioxide in the blood

 

R = respiratory quotient, assumed to be 0.8

 

3.

AlveolarÐarterial oxygen gradient

 

 

PAO2 − PaO2

 

 

A-a gradient (on room air) = 2.5 + 0.21 × age in years

 

Normal value = 3–15 mmHg

 

 

Varies with FiO2

 

 

For FiO2 = 21%; A-a gradient = 5–15 mmHg

4.

For FiO2 = 100%; A-a gradient = <150 mmHg

PaO2/FiO2 ratio

 

Normal = 300–500 mmHg

<300 = acute lung injury (previous definition) <200 = ARDS (previous definition)

Berlin definition:

200–300 (with PEEP/CPAP >5) = Mild ARDS <200 (with PEEP >5) = Moderate ARDS <100 (With PEEP >5) = Severe ARDS

5.ArteriolarÐalveolar oxygen ratio = PaO2/PAO2

Normal = 0.77–0.82 (most reliable when FiO2 <0.5)

6.Oxygenation index =

é

FiO

2(fraction of inspired O2)

ù

êmean airway pressure (cm H2O) ´

 

ú ´ 100,

 

PaO2(mm Hg)

ê

 

ú

ë

 

 

û

0 - 25= Good outcome

 

 

 

>25–40 = severe hypoxemia

 

 

 

844

Appendices

 

 

7. Static lung compliance (Crs stat)

Tidal volume

Compliancestatic = Plateau pressure - PEEP(positive end - expiratory pressure)

Normal compliance in an intubated patient = 57–85 mL/cm H2O 8. Dynamic lung compliance (Crs dynamic)

Tidal volume

Compliancedynamic = Peek pressure - PEEP(positive end - expiratory pressure)

Variable depending on peak pressure in an intubated patient Lung + Thoracic wall compliance = 0.1 L (100 ml)/cm H2O

9. Airway resistance

Airway resistance = Peak inspiratory pressure - plateau pressure Peak inspiratory flow

Normal resistance in an intubated patient is 4–6 cm H2O/L/s

10.PaCO2–PetCO2 gradient

Normal = 4–5 mmHg

11.Dead space ventilation VD = PaCO2 - PetCO2

VT PaCO2

VD = Dead Space Ventilation = 1ml/lb (2.2 kg) of ideal body wt =150 ml VT = Tidal Volume

PetCO2 = end-tidal CO2 measured by capnography

Normal VD /VT = 0.5 (50%) in mechanically ventilated patients

0.3(30%) in spontaneously breathing patients

12.Shunt equation (right to left shunt) Qs / Qt = (CcO2 - CaO2 )

(CcO2 - CvO2 )

Qs/Qt = shunt fraction

CcO2 is the end-capillary oxygen content (estimated from the PAO2) CaO2 is the arterial oxygen content

CvO2 is the mixed venous oxygen content Normal = 5%

Alternate equation (in patients breathing 100% oxygen for 20 min)

Qs / Qt = 100 ´ (0.0031´ AaG)/ ((.0031´ AaG)+ 5)

13. PaO2 + PaCO2 <150 mmHg at sea level breathing room air

Appendices

845

 

 

B.Hemodynamic equations

(See Chap. 16)

Parameter

 

 

Formula

 

 

Normal range

Pulse pressure

 

 

Systolic − diastolic BP

40 mmHg

Mean arterial pressure (MAP)

 

1/3 pulse pressure + diastolic BP

65 mmHg

Cardiac output (CO)

 

 

SV × HR

 

 

4–7 L/min

Cardiac index (CI)

 

 

CO/BSA

 

 

3.5–4.5 L/min/m2

Stroke volume (SV)

 

 

CO/HR × 1,000 End diastolic

60–80 mL

 

 

 

volume (EDV) (120 ml) – End

 

 

 

 

systolic volume (ESV) (50 ml)

 

Stroke volume index (SVI)

 

 

CI/HR × 1,000, SV/BSA

33–47 mL/m2/beat

Systemic vascular resistance

 

 

[(MAP − CVP)/CO] × 80

900–1,200 dyn.s/cm5

(SVR)

 

 

 

 

 

 

 

 

Systemic vascular resistance index

(MAP – CVP) 80/CI

1,970–2,390 dyn.s/

(SVRI)

 

 

 

 

 

 

 

cm5/m2

Pulmonary vascular resistance

 

[(MPAP − PAOP)/CO] × 80

80–120 dyn.s/cm5

Pulmonary vascular resistance

 

[(MPAP − PAOP)/CI] × 80

255–285 dyn.s/cm5/m2

index

 

 

 

 

 

 

 

 

Oxygen delivery (DO2)

 

 

CO (L) × CaO2 (ml/dl) × 10

700–1,400 mL/min

Oxygen delivery index (DO

I)

 

CaO

2

× CI × 10

 

500–600 mL/min/m2

2

 

 

 

 

 

 

 

Oxygen consumption (VO2)

 

 

CO (L) × (CaO2 − CvO2) × 10

180–280 mL/min

Oxygen consumption index (VO

I)

CI × (CaO

− CvO

) × 10

120–160 mL/min/m2

 

2

 

 

 

2

2

 

 

Oxygen extraction ratio (O2ER)

 

VO2/DO2 × 100

 

25%

Oxygen extraction index (O2EI)

 

[(SaO2 − SvO2)/SaO2] × 100

20–25%

Arterial oxygen content (CaO2)

 

(1.39 × Hb SaO2) + (0.003 × PaO2)

17–20 mL/dL

Mixed venous oxygen content

 

(1.39 × Hb × SvO2) + (0.003 ×

12–15 mL/dL

(CvO2)

 

 

PvO2)

 

 

 

A-V oxygen content difference

 

CaO2 − CvO2

 

4–6 mL/dL

(C(a-v)O2)

 

 

 

 

 

 

 

 

Systolic pressure variation (SPV)

[(SPmax − SPmin)/

<5 mmHg unlikely to

 

 

 

(SPmax + SPmin)/2] × 100

be preload responsive

 

 

 

 

 

 

 

 

>5 mmHg likely to

 

 

 

 

 

 

 

 

be preload responsive

Pulse pressure variation (PPV)

 

(SVmax − SVmin)/

<10% unlikely to be

 

 

 

[(SVmax + SVmin)/2] × 100

preload responsive

 

 

 

 

 

 

 

 

>13–15% likely to be

 

 

 

 

 

 

 

 

preload responsive

Stroke volume variation (SVV)

 

SV × (MAP − PAWP) × 0.0136

<10% unlikely to be

 

 

 

 

 

 

 

 

preload responsive

 

 

 

 

 

 

 

 

>13–15% likely to be

 

 

 

 

 

 

 

 

preload responsive

Left ventricular stroke work

 

 

SVI × (MAP − PAWP) × 0.0136

58–104 g m/beat

(LVSW)

 

 

 

 

 

 

 

 

846

 

Appendices

 

 

 

(continued)

 

 

Parameter

Formula

Normal range

Left ventricular stroke work index

SV × (MPAP − RAP) × 0.0136

50–62 g m/m2/beat

(LVSWI)

 

 

Right ventricular stroke work

SVI × (MPAP − RAP) × 0.0136

8–16 g m/beat

(RVSW)

 

 

Right ventricular stroke work index

Diastolic BP − PAWP

5–10 g m/m2/beat

(RVSWI)

 

 

Coronary artery perfusion pressure

 

60–80 mmHg

(CPP)

 

 

CVP central venous pressure, MPAP mean pulmonary artery pressure, HR heart rate, BP blood pressure, PAOP pulmonary artery occlusion pressure, SaO2 arterial oxygen saturation, SvO2 mixed venous oxygen saturation, PaO2 arterial oxygen partial pressure, PvO2, mixed venous oxygen partial pressure

C.AcidÐbase equations

1.Validity of the data

Henderson’s equation

H + ´ HCO3 = 24

PaCO2

H+ = hydrogen ion

HCO3 = Bicarbonate

PaCO2 = Partial pressure of carbon dioxide

pH

[H+] (mmol/L)

7.60

25

7.55

28

7.50

32

7.45

35

7.40

40

7.35

45

7.30

50

7.25

56

7.20

63

7.15

71

Rule of thumb: H+ = 80 minus the last two digits of pH after decimal (for pH 7.20–7.50)

For example, pH 7.35: H+ = 80–35 = 45

2.Respiratory acidosis or respiratory alkalosis

Acute respiratory acidosis or alkalosis: DpH = 0.008 × DPaCO2 (from 40)

Chronic respiratory acidosis or alkalosis: DpH = 0.003 × DPaCO2 (from 40)

Acute respiratory acidosis = ↑PaCO2 10 mmHg = ↑HCO3 1 mmol/L

Chronic respiratory acidosis = ↑PaCO2 10 mmHg = ↑HCO3 3 mmol/L

Acute respiratory alkalosis = ↓PaCO2 10 mmHg = ↓HCO3 2 mmol/L

Chronic respiratory alkalosis = ↓PaCO2 10 mmHg = ↓HCO3 4 mmol/L

Acute respiratory acidosis or alkalosis: SBE (standard base excess) = zero

Chronic respiratory acidosis or alkalosis: Change in bicarbonate= 0.4×SBE

Appendices

847

 

 

3.Metabolic acidosis

Predicted PaCO2 = 1. 5 × [HCO3+ 8] ±2

Change in bicarbonate = change in standard base excess (SBE)

1 mEq/L fall in HCO3 = 1.2 mmHg fall in PaCO2

Bicarbonate deficit (mEq/L) = [0.5 × body weight (kg) × (24 − [HCO3])] Rule of thumb: Expected PaCO2 = the last two digits of pH after decimal

4.Metabolic alkalosis

Predicted PaCO2 = 0.7 × [HCO3 + 21] ± 2

Change in bicarbonate = 0.6 × standard base excess (SBE)

1 mEq/L rise in HCO3 = 0.7 mmHg rise in PaCO2

Bicarbonate excess [0.4 × body weight (kg) × ([HCO3] − 24)]

Rule of thumb: Expected PaCO2 = the last two digits of pH after decimal

5.Blood anion gap

Anion gap (AG) = Na+ − (Cl+ HCO3)

– Normal value: 10 ± 4 mmol/L

Correction for albumin: For every change (increased or decreased) of 1 g/dL in albumin, a change of 2.5 mmol/L in the anion gap

Correction for pH: In acidosis, decrease by 2 mmol/L; in alkalosis, increase by 2 mmol/L

6.Delta gap/Delta ratio

Delta gap = delta AG − delta HCO3

Delta ratio = delta AG/delta HCO3

Where Delta AG = patient’s AG − 12 mEq/L {normal AG}

Delta HCO3= 24 mEq/L {normal HCO3} − patient’s HCO3

• Normal delta gap (in pure anion gap metabolic acidosis) = 0 ± 6

Normal delta ratio =1.1

High delta gap/delta ratio > 1 signifies a concomitant metabolic alkalosis or chronic respiratory acidosis.

Low delta gap/delta ratio < 1 signifies a concomitant normal anion gap metabolic acidosis or chronic respiratory alkalosis.

7.Urine anion gap (UAG)

UAG (mmol/L) = urine [(Na + K) − Cl]

Normal: usually zero or positive

Nonanion gap metabolic acidosis due to gastrointestinal loss: UAG negative

Nonanion gap metabolic acidosis due to renal cause (renal tubular acidosis): UAG positive

8.Stewarts approach

Strong ion difference (SID): [Na+]+[K+]+[Ca2+]+[Mg2+]−[Cl]−[lactate]

Normal value: 40 mEq/L

Increase in SID = alkalosis (increase in pH)

Decrease in SID = acidosis (decrease in pH)

Strong ion gap (SIG): SID − SIDeff

SIDeff = effective strong ion difference (depends on pH, albumin, phosphate)

848

Appendices

 

 

12.2×PCO2/(10 − pH) + [albumin] × (0.123 × pH − 0.631) + [PO4−] × (0.3 09 × pH − 0.469)

Normal SIG = 0

Positive SIG = Increase in organic acid D. Electrolyte equations

1.Hyponatremia

Sodium deficit = (desired [Na+] − current [Na+]) × 0.6 × body weight in kg

Increase in serum sodium = (infusate sodium − serum sodium)/[(0.6 × body weight) + 1]

Rule of thumb:

For hypertonic (3%) saline, infusion rate (mL/h) = weight (kg) × desired rate of correction (mEq/h)

e.g. to correct sodium by 0.5 meq/l/hr, the desired rate of 3% saline infusion in a 60 kg man would be = 60 × 0.5 = 30 ml/hr

0.9% NaCl corrects at 1–2 mmol/L for every 1 L NaCl

Calculated urine osmolarity=the last two digits of urine-specific gravity×30

2.Hypernatremia

 

æ plasmaNa+

ö

Free water deficit (L) = 0.4 ´ body weight ´ ç

 

-1÷

140

 

è

ø

3.Correction sodium for hyperglycemia

For each 100 mg/dL increase in blood glucose above 200 mg/dL, serum sodium decreases by 2.4 mEq/L.

4.Serum osmolality

Calculated Sosm = (2 × serum [Na]) + [glucose, in mg/dL]/18 + [blood urea nitrogen, in mg/dL]/2.8

Calculated Sosm with standard units (mmol/L) = (2 × serum [Na]) + [glucose] + [urea]

Normal value = 270 and 290 mOsm/kg H2O

Osmolar gap = measured osmolality − calculated osmolality

Normal value = <10 mOsm/kg H2O

5.Corrected calcium

• Corrected calcium (mg/dL) = measured total calcium (mg/dL) + [0.8 × (4.0 − albumin)]

Corrected calcium (mmol/L) = measured total calcium (mmol/L)+ [0.02 × (Normal albumin [40 g/l] – patients albumin)]

E. Renal equations

1.Measured creatinine clearance (CCr) L/day

[24-h urine creatinine (mg/dL) × 24-h urine volume (L/day)]/serum creatinine (mg/dL)

CCr ml/min = [(CCr L/day × 1000 ml/L)]/1440 min/day

CCr ml/min × 1.73/BSA = CCr ml/min/1.73 sq.m

Normal values = 95 ± 20 mL/min per 1.73 m2 in women and 120 ± 25 mL/ min per 1.73 m2 in men

Appendices

849

 

 

2. Estimated creatinine clearance (CockroftÐGault equation)

• (140 - Age in years × Weight in kg) / Serum creatinine in mg/dl × 72

• For female patient multiply with 0.85

3.Fractional excretion of sodium (FENa+)

[UrineNa+ ] ´[plasma creatinine]

[Urine creatinine] ´[plasmaNa+ ]

Normal value = <1

4.Fractional excretion of urea (FEurea)

[Urineurea] ´[plasma creatinine]

[BUN] ´[urinecreatinine]

– <35 in prerenal azotemia, 50–65 in acute tubular necrosis

F.Nutrition equations

1.Ideal or predicted body weight (IBW)

• Male IBW (kg) = 50 + (0.91 × (height in cm − 152.4))

• Male IBW (kg) = 50 kg for 5 ft; add 2.3 kg for every 1 in. above 5 ft

Female IBW (kg) = 45.5 + (0.91 × (height in cm − 152.4))

Female IBW (kg) = 45.5 kg for 5 ft; add 2.3 kg for every 1 in. above 5 ft

2.HarrisÐBenedict equation with LongÕs modiÞcation (calories requirement)

• For women, basal metabolic rate (BMR) = 65.5 + (9.6 × weight in kg) + (1.8 × height in cm) − (4.7 × age in years)

For men, BMR = 66 + (13.7 × weight in kg) + (5 × height in cm) − (6.8 × age in years)

Actual energy needs=BMR×AF×IF (AF, activity factor; IF, injury factor)

Activity factor (AF): Confined to bed = 1.2; out of bed = 1.3

• Injury factor (IF): Minor surgery = 1.2; skeletal trauma = 1.3; major sepsis = 1.6; severe burn = 2.1

Normal calories requirement = 25–30 kcal/kg of predicted body weight

3.Protein requirement

1 g of nitrogen = 6.25 g of protein

Non-protein calories (NPC)–nitrogen ratio = 150:1

Nitrogen balance = (protein intake/6.25) − (24-h urinary urea nitrogen + 4)

Negative nitrogen balance >5 = severe stress

• 1 g of nitrogen loss = 30 g lean body mass lost

1 g of glucose = 4 kcal

1 g of protein = 4 kcal

1 g of lipid = 9 kcal

Protein loss in dialysis = 4–6 g/h in hemodialysis; 40–60 g in peritoneal dialysis

4.Respiratory quotient (RQ):

Carbon dioxide production (VCO2)/oxygen consumption (VO2)

Normal value on balanced diet = 0.7–1.0

> 1: Excess carbohydrate

<0.7: Excess fat

850

Appendices

 

 

G.Intra-abdominal pressure equation

Abdominal perfusion pressure (APP) = mean arterial pressure (MAP) − IAP (intra-abdominal pressure)

Normal intra-abdominal pressure = 5–7 mmHg

Filtration gradient (FG) = glomerular filtration pressure (GFP) − proximal tubular pressure (PTP) = MAP − 2 × IAP

H.Statistical equations

Sensitivity: True positives/(true positive [TP] + false negative [FN])

Specificity: True negative/(true negative [TN] + false positive [FP])

Positive predictive value: True positive/ (true positive + false positive)

Negative predictive value: True negative/(true negative + false negative)

Positive likelihood ratio (LR+): sensitivity/(1 − specificity)

Negative likelihood ratio (LR): (1 − sensitivity)/specificity

Prevalence (pretest probability): (TP + FN)/(TP + FP + TN + FN)

Pretest odds: Prevalence/(1 − prevalence)

Posttest odds: Pretest odds × LR

Posttest probability: Posttest odds/(posttest odds + 1)

Event rate (ER): Total events/total subjects (event + nonevent)

Absolute risk reduction (ARR): Control event rate (CER) − experimental event rate (EER)

Relative risk reduction (RRR): (CER − EER)/CER

Relative risk (RR): EER/CER

Odds ratio: (experimental event [EE]/experimental nonevent [EN])/(control event [CE]/control nonevent [CN])

Number needed to treat (NNT): 1/ARR

Number needed to harm (NNH): 1/(CER − EER)

Rate of Type I error = Number of False positives = Alpha

Rate of Type II error = Number of False negatives = Beta

Power of a test = (1-Beta) I. Neurology equations

CBF = (CAP − JVP) ÷ CVR

(CBF, cerebral blood flow; CAP, carotid artery pressure; JVP, jugular venous pressure; CVR, cerebrovascular resistance)

CPP = MAP − ICP

(CPP, cerebral perfusion pressure; MAP, mean arterial pressure; ICP, intracranial pressure)

– Keep CPP between 60 and 75 mmHg

Increased WBC in traumatic tap:

Rule of thumb: Subtract one WBC for every 500–1,500 RBCs (if peripheral WBC is normal)

J.Hematology equation

ANC = WBC × [(segs/100) + (bands/100)] (ANC, absolute neutrophil count)

Corrected reticulocyte count (CRC)= reticulocytes (%) ´ Hct (L / L)

0.45L/L

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]