Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
19
Добавлен:
23.03.2016
Размер:
147.14 Кб
Скачать

17 Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей

Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).

Условные графические обозначения полевых транзисторов с изолированным затвором: а – со встроенным р-каналом; б – со встроенным n-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом

Транзистор с управляющим p-n-переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, аб (p- и n-типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм.

Устройство транзистора

Графическое изображение: а – канал р-типа; б – канал n-типа

Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р(канала), поэтому область р-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.

Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим р-n-переходом и каналом n-типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: изи > 0, то оно сместит p-n-переход в обратном направлении.

18Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами(металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.

Устройство МДП-транзистора со встроенным каналом n-типа

На рисунке показан принцип устройства транзистора со встроенным каналом.

Основанием (подложкой) служит кремниевая пластинка с электропроводностью p-типа. В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностный канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод. Вольт-амперная характеристика (ВАХ) — график зависимости тока через двухполюсник от напряжения на этом двухполюснике. Вольт-амперная характеристика описывает поведение двухполюсника на постоянном токе. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности ), поскольку для линейных элементов ВАХ представляет собой прямую линию и не представляет особого интереса.

19Тиристор - это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем. Тиристор имеет три вывода, один из которых - управляющий электрод, можно сказать, "спусковой крючок" - используется для резкого перевода тиристора во включенное состояние.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают четыре основных свойства тиристора:

  • тиристор, как и диод, проводит в одном направлении, проявляя себя как выпрямитель;

  • тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния. Тем не менее для возврата тиристора в выключенное (разомкнутое) состояние необходимо выполнить специальные условия;

  • управляющий ток, необходимый для перевода тиристора из закрытого состояния в открытое, значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

  • средний ток через нагрузку, включенную последовательно с тиристором, можно точно регулировать в зависимости от длительности сигнала на управляющем электроде. Тиристор при этом является регулятором мощности.

Структура тиристора

   Тиристором называется управляемый трехэлектродный полупроводниковый прибор, состоящий из чередующихся четырех кремниевых слоев типа р и n. Полупроводниковый прибор с четырехслойной структурой представлен на рис. 1.

   Крайнюю область р-структуры, к которой подключается положительный полюс источника питания, принято называть анодом, а крайнюю область n, к которой подключается отрицательный полюс этого источника, - катодом.

Структура и обозначение тиристора

Динистор - это тиристор, который имеет только два вывода, называющиеся анодом и катодом.

Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открыт-закрыт (управляемый диод).

Простейшим тиристором является динистор – неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рис. 1.1.2). Здесь, как и у других типов тиристоров, крайние n-p-n-переходы называются эмиттерными, а средний p-n-переход – коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью – анодом.

В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами (симисторы). Тиристор имеет нелинейную вольтамперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

20 генераторы электрических колеба́ний-устройство для преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. По форме электрических колебаний различают: генераторы синусоидальных (гармонических) колебаний, импульсные генераторы, генераторы колебаний специальной формы.

Параметрическое возбуждение и усиление электрических колебаний метод возбуждения и усиления электромагнитных колебаний, в котором усиление мощности происходит за счёт энергии, затрачиваемой на периодическое изменение величины реактивного параметра (индуктивности L или ёмкости С) колебательной системы. На возможность использования параметрических явлений для усиления и генерации электрических колебаний впервые указали Л. И. Мандельштам и Н. Д. Папалекси, однако практическое применение параметрический метод нашёл лишь в 50-е гг. 20 в., когда были созданы параметрические полупроводниковые диоды с управляемой ёмкостью и разработаны малошумящие параметрические усилители СВЧ.

классификация. Дизельные генераторы, в зависимости от их назначения, имеют широкий спектр свойств и конструктивных особенностей. Именно от этих показателей и зависит классификация дизелей. В зависимости от мощности, дизель генераторы могут быть маломощными (менее 74кВт), средней мощности (от 74 до 736кВт) и мощными (свыше 736кВт). Четкого деления по этому признаку для дизелей нет, поэтому, их классификация по мощности может считаться условной.

21 ЭЛЕКТРОННЫЕ ЛАМПЫ- электровакуумные приборы, в к-рых поток свободных электронов, эмитируемых термоэлектронным катодом, движется в высоком вакууме и управляется по плотности и направлению движения с помощью электрич. полей, создаваемых потенциалами на электродах прибора. Э. л. используются для выпрямления перем. тока (диоды - простейшие двухэлектродные лампы, в к-рых анодный ток управляется электрич. полем анода), генерирования, усиления и преобразования эл.-магн. колебаний (сеточные многоэлектродные Э. л., где управление электронным потоком осуществляется гл. обр. с помощью сеток).

Работа Э. л. основана на физ. особенностях их вольт-амперных характеристик (BAX) - зависимости силы тока от потенциалов соответствующих электродов.

Теоретическая вольтамперная характеристика диода при двух различных температурах (T1 и T2 )катода: I - область объёмного электронного заряда; II - область токов насыщения.

Теоретическая BAX диода, катод и анод к-рого изготовлены из одинакового материала, имеет вид, представленный на рис. 1 (реальные характеристики диода не имеют принципиальных отличий от теоретической). На этой характеристике различают два участка: I - область объёмного электронного заряда, где зависимость анодного тока ia от анодного потенциала Ua определяется Ленгмюра формулой:

и II-область токов насыщения, где зависимость ia от Ua даётся выражением:

где i- ток эмиссии катода, е - заряд электрона. Коэффициенты С и b в ф-лах (1) и (2) зависят от размеров межэлектродного промежутка и конструкции электродов.

Конструктивно триод отличается от диода тем, что в межэлектродное пространство последнего вблизи катода вводят третий управляющий электрод - сетку, проницаемую для электронного потока, движущегося с катода на анод. Такой триод с потенциалом на управляющей сетке Uc, а на аноде- U аможно рассматривать как эквивалентный диод с действующим анодным потенциалом U д=Uc + DUa. и вольт-амперной характеристикой, определяемой в области объёмного электронного заряда зависимостью 

где D - проницаемость триода.

22 Однофазная однополупериодная схема выпрямления

Простейшей схемой выпрямителя является однофазная однополупериодная схема .Трансформатор играет двойную роль: он служит для подачи на вход выпрямителя ЭДС , соответствующей заданной величине выпрямленного напряжения и ообеспечивает гальваническую развязку цепи нагрузки и питающей сети. Параметры, относящиеся к цепи постоянного тока, то есть к выходной цепи выпрямителя, принято обозначать с индексом (прямой): – сопротивление нагрузки; – мгновенное значение выпрямленного напряжения; гновенное значение выпрямленного тока.

Схема представляет собой мост из вентилей VD1 – VD4 (рис. 2.26, а), в одну диагональ которого включена нагрузка, а в другую – переменное напряжение . В положительном полупериоде открыты вентили VD1 – VD3, в отрицательном – VD2 – VD4. Ток в нагрузке протекает в одном и том же направлении в течение обоих полупериодов, поэтому эта схема так же, как и предыдущая относится к двухполупериодным схемам выпрямления.

23

24

25 Резонансный усилитель транзисторе

. 

Схема резонансного усилителя

Причиной самовозбуждения могут быть транзисторы с большой внутренней обратной связью. Поэтому полезно попробовать заменить транзисторы на более высокочастотные, у которых такая связь меньше, или же применить однотипные с прежними, но с меньшим коэффициентом передачи по току. Если же подобная замена по каким-либо причинам невозможна, надо попробовать ввести в каскад отрицательную связь по току: включить в цепь эмиттера резистор, при котором генерация срывается. Но в этом случае несколько снижается усиление каскада.

В резонансных усилителях, собранных по традиционной схеме, коэффициент устойчивого усиления в 5...10 раз меньше теоретического коэффициента усиления, который могли бы обеспечить активные элементы этого усилителя

26 Схему простого транзисторного двухкаскадного усилителя НЧ вы видите на (рис. 1). Рассмотрите ее внимательно. В первом каскаде усилителя работает транзистор V1, во втором - транзистор V2. Здесь первый каскад является каскадом предварительного усиления, второй - выходным. Между ними - разделительный конденсатор С2. Принцип работы любого из каскадов этого усилителя одинаков и аналогичен знакомому вам принципу работы однокаскадного усилителя. Разница только в деталях: нагрузкой транзистора V1 первого каскада служит резистор R2, а нагрузкой транзистора V2 выходного каскада - телефоны В1. Смещение на базу транзистора первого каскада подается через резистор R1, а на базу транзистора второго каскада - через резистор R3. Оба каскада питаются от общего источника U и. п., которым может быть батарея гальванических элементов или выпрямитель. Режимы работы транзисторов устанавливают подбором резисторов R1 и R3, что обозначено на схеме звездочками.

27 В обмотке трансформатора коллекторные токи обоих транзисторов суммируются (график г), в результате на выходе усилителя получаются более мощные электрические колебания звуковой частоты, чем в обычном однотактном усилителе. Динамическая головка В, подключенная ко вторичной обмотке трансформатора, преобразует их в звук. Теперь, пользуясь схемой на, разберемся в принципе работы бестрансформаторного двухтактного усилителя мощности. Здесь также два транзистора, но они разной структуры: транзистор Vl - p - n - p, транзистор V2 - n - p - n. По постоянному току транзисторы включены последовательно, образуя как бы делитель напряжения питающего их источника постоянного тока. При этом на коллекторе транзистора V1 относительно средней точки между ними, называемой точкой симметрии, создается отрицательное напряжение, равное половине напряжения источника питания, а на коллекторе транзистора V2 - положительное, и также равное половине напряжения источника питания Uн.п. Динамическая головка В включена в эмиттерные цепи транзисторов: для транзистора V1 - через конденсатор С2, для транзистора V2 - через конденсатор С1. Таким образом, транзисторы по переменному току включены по схеме ОК (эмиттерными повторителями) и работают на одну общую нагрузку - головку В.

Двухтактный бестрансформаторный усилитель мощности.

30

31 Самая распространённая, самая не дорогая и самая простая схема. Детали - не очень критичны. Хорошо подходит для простых и красочных опытов с высоким напряжением. На выходе даёт тонкую голубую дугу 0,5 - 1,5см. Если после включения схема не заработает, то следует переключить (поменять фазировку) любую из первичных обмоток.

V1 - Источник питания 12В-14В

C1 - 10000 мкФ, 50В

R1 - 27 Ом, 5 Вт

R2 - 240 Ом, 5 Вт

Q1 - MJE13009 или KSE13009

L1 - 4-5 витков, 1мм эмальпровод

L2 - 2 витка, 0,5мм эмальпровод

L3 - Вторичная обмотка строчного трансформатора ТВС-110Л6.

L1,L2,L3 - Переделанный строчный трансформатор ТВС-110Л6. (Позже использовал ТВС-90ЛЦ2-1). В феррите - штатные прокладки

Соседние файлы в папке Электроникаирадиотехника