Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ ПО ОПТИЦЕ. ХРАМОВ. 2 КУРС 3 СЕМЕСТР.doc
Скачиваний:
372
Добавлен:
25.03.2016
Размер:
5.21 Mб
Скачать

24 Многолучевая интерференция.

До сих пор мы рассматривали интерференцию между двумя волнами. Теперь рассмотрим многолучевую интерференцию на примере интерферометра Фабри–Перо (ИФП) (рис.6.10). Исследуем сначала интерференцию многих световых волн при прохождении плоской монохроматической волны через плоскопараллельную диэлектрическую пластинку толщиной h и показателем преломления n. Обозначим – амплитудные коэффициенты пропускания и отражения при входе волны внутрь пластины,– амплитудные коэффициенты пропускания и отражения на выходе волны из пластины наружу. При этом справедливы соотношения:

(6.34)

где Á и Â – энергетические коэффициенты пропускания и отражения соответственно. Будем считать углы падения j и преломления q достаточно малыми, что можно считать коэффициенты отражения и пропускания независящими от этих углов. Разность хода D между соседними интерферирующими волнами на выходе пластины равна

, (6.35)

а разность фаз равна

. (6.36)

Запаздывание последующей волны относительно предыдущей за счет прохождения волны в пластинке учтем множителем е-id . Суммарная амплитуда E2 прошедшей волны определяется суперпозицией всех прошедших пластинку волн:

. (6.37)

Интенсивность света определяется следующим образом:

или

(6.38)

Эта формула носит название формулы Эйри.

Отметим, что аналогично можно найти суммарную интенсивность света при отражении от плоскопараллельной пластинки:

.(6.39)

Интерференционные картины в проходящем и отраженном свете оказываются дополнительными.

Вид функции Эйри (6.38) для трех различных коэффициентов отражения (1 – Â=0,04; 2 – Â=0,4; 3 – Â=0,8) представлен на рис.6.11. Максимумы функции достигаются при, гдеm = 0,1,2, ..., а минимумы – при. Т.о. функция видности интерференционной картины равна:

,(6.40)

т.е. при Â ® 1 Þ V ® 1. При минимуме прошедшей проинтерферировавшей волны наблюдается максимальное отражение света от интерферометра тоже за счет интерференционного сложения волн на зеркалах.

Если на ИФП падают пучки света под всевозможными углами, то интерференционные полосы имеют вид колец. Максимальный порядок интерференции соответствует центру интерференционной картины. Интерференционная картина имеет одинаковый вид там, где падающие пучки имеют одинаковый угол падения на ИФП (полосы равного наклона). Интерференционная картина наблюдается или на бесконечности, или (что обычно реализуется в эксперименте) в фокальной плоскости линзы.

В реальных измерительных ИФП интерференция возникает между двумя отполированными с высокой точностью ( ~ 0,01l) плоскими строго параллельными (с плоскостностью до 0,005) зеркалами с большими коэффициентами отражения (алюминиевые зеркала – ~75%, посеребренные – ~90%, диэлектрические интерференционные – до 99,9%). Интерферометр с показателем преломления между зеркалами n = 1 называется эталоном Фабри–Перо).

f(D), с помощью (6.53) получаем спектральный состав излучения. Такой метод определения спектров называется Фурье-спектроскопией. Рассмотрим еще некоторые применения интерференционных явлений в современной технике.

25. Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления. Принцип Гюйгенса — Френеля формулируется следующим образом: каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Зоны Френеля. Пусть сферическая волна падает на непрозрачный экран с отверстием. Требуется найти распределение интенсивности света за экраном. Для решения этой задачи делаются два предположения:

  1. непроницаемые части экрана не являются источниками вторичных волн;

  2. в отверстии точки волнового фронта являются такими же источниками вторичных волн, какими они были бы при отсутствии непроницаемых частей экрана.

Пусть A – источник сферической волны, S – волновой фронт в некоторый момент времени, R – радиус кривизны этого фронта (рис.7.2). Найдем интенсивность в точке P с помощью принципа Гюйгенса – Френеля. Разобьем поверхность S на кольцеобразные зоны такого размера, чтобы расстояния от краев зоны (в разрезе это соответствует точкам M1, M2, M3 , …) до P отличались на l/2 (эти зоны называются зонами Френеля):(7.3)

Из геометрии рис.7.3 можно получить для радиуса m–й зоны Френеля rm :

(7.4)

Исключая величину dm и пренебрегая слагаемыми ~l2 ввиду их малости, получаем:

(7.5)

Площади всех зон Френеля примерно одинаковы (в случае пренебрежения кривизной поверхности, что не вносит существенной ошибки, если радиусы зон Френеля много меньше радиуса кривизны волнового фронта (обычно это справедливо для очень большого числа зон Френеля)):

(7.6)

Графическое вычисление амплитуды (метод векторных диаграмм). Разделим каждую из зон на большое число N участков. Между началом и концом зоны фаза меняется на p, а между малыми участками – на d = p/N . Пусть E0 – амплитуда волны, приходящей в точку наблюдения P от каждого участка; а фаза волны, приходящей из точки D в точку P – равна нулю. Комплексная амплитуда волны в точке P от центральной зоны Френеля с учетом интерференции равна:

(7.7)

Аналитическое сложение амплитуд можно проделать графически, изображая комплексную амплитуду в виде вектора (рис.7.3). При увеличении числа разбиений до бесконечности ломаная кривая превращается в плавную. Длина вектораDM1 пропорциональна амплитуде волны в точке P, когда открыта вся центральная зона Френеля. Аналогично продолжая построение, можно получить кривую, по которой легко определить амплитуду волны (и ее интенсивность), зная соотношение диаметров открываемого отверстия и зон Френеля. При строгом равенстве амплитуд в (7.7) складываемых колебаний от элементарных участков результирующая амплитуда от двух открытых соседних зон была бы равна нулю, т.е. вторичные волны в результате интерференции гаси ли бы друг друга, но коэффициент наклона K(a) в (7.1) убывает по мере увеличения a и приводит к уменьшению амплитуд вторичных волн. Поэтому полученная кривая не замыкается, а имеет вид спирали. Зависимость амплитуды поля в точке P от радиуса отверстия показана на рис.7.4.

Пятно Пуассона. Если на пути световой волны стоит непрозрачный круглый экран, то за экраном в его тени на оси возникает светлое пятно, называемое пятном Пуассона. Необходимость возникновения светлого пятна очевидна из рассуждений по методу зон Френеля. Экран закрывает некоторое число зон Френеля начиная с центральной. Однако следующие зоны после последней из закрытых создают в точке P освещенность, значение которой можно рассчитать с помощью спирали. Т.о., получается, что волна как бы огибает непрозрачный экран. Интенсивность пятна Пуассона весьма слаба при больших размерах непрозрачного экрана. Кроме того, необходимо, чтобы свет обладал достаточно большой степенью когерентности.

Отметим, что можно наблюдать и противоположный эффект – темное пятно в центре картинки при дифракции на открытом отверстии. Такое пятно называется пятном Араго.

26 Дифракция на прямоугольном отверстии (рис.7.7). Отверстие имеет стороны a и b. На отверстии фаза и амплитуда плоской волны постоянна. Комплексная амплитуда волны на отверстии обозначим A0. Тогда, применяя формулу (7.35), получаем для амплитуды поля при дифракции: , (7.36)

где .

Интенсивность в дифракционной картине с точностью до постоянного множителя имеет вид (см. рис.7.8):

. (7.37)

Дифракция на щели.

Рассмотрим падение плоской монохроматической световой волны на бесконечную щель шириной b (рис.7.9). Участок dx, находящийся на расстоянии x от левого края щели (начала координат), в направлении Z’ излучает плоскую волну с запаздыванием фазы относительно точки О на kx×sinj. Угол j отсчитывается от оси Z – нормали к щели (первоначального направления падающей волны), k – волновое число падающей волны. При записи амплитуды волны учтем, что вся щель в направлении j = 0 посылает излучение с амплитудой E0. Предполагая равномерное распределение амплитуды по щели, получим, что участок dx щели пошлет в направлении Z’ волну dE1 с амплитудой E0dx/b :

(7.39)

Отсюда имеем для амплитуды волны от всей щели:

(7.40)

После несложного интегрирования и перехода от поля к интенсивности, получаем интенсивность дифракционной картины:

(7.41)

где I0 = E02 ; I1 = E12 ; . (7.42)

Проанализируем выражение (7.41).

  1. При j = 0 u =0. Используя соотношение , получаем, что в центре дифракционной картины интенсивность максимальна и равнаI0 .

  1. При углах j, для которых sinu = 0, а u ¹ 0 интенсивность света обращается в нуль. Тогда условие минимума дифракционной картины на одиночной щели принимает вид:

(7.43)

3. Основная часть потока энергии сосредоточена в пределах изменения угла дифракции j между первыми (n = ±1) симметричными максимумами. График зависимости (7.41) приведен на рис.7.10.

4. Чем меньше (уже) щель, тем шире центральный максимум. Нетрудно заметить, что при b » l центральный максимум расплывается на всю полуплоскость (j » p/2). Дальнейшее уменьшение щели приводит лишь к монотонному уменьшению интенсивности прошедшего света.

Изучение картины дифракции дает информацию о ширине щели, если известна длина волны используемого света. Наоборот, зная ширину щели, можно найти длину волны. Таким образом, дифракционная картина от данного объекта имеет характерный вид, позволяющий получать информацию о размерах этого объекта. Отмеченное обстоятельство носит достаточно общий характер и лежит в основе метрологического применения дифракционных явлений.

27. Дифракция на круглом отверстии.

Пусть R – радиус отверстия. Расчет удобнее вести в полярных координатах (r, q) и (r’, q’) в плоскостях отверстия и дифракционной картины:

(7.44)

Тогда (7.35) для этого случая запишется в виде:

(7.45)

где – функция Бесселяm-го порядка. Воспользуемся свойством функций Бесселя:

. (7.46)

Тогда получаем (рис.7.11):

.(7.47)

Интенсивность дифракционной картины определяется квадратом этой функции, т.е. в центре картины имеется светлое круглое пятно, окруженное темными и светлыми кольцами. Максимумы интенсивности быстро убывают. Радиусы колец определяются из корней функции БесселяJ1 (r)=0. Т.к. существует приближенное соотношение , токачественно распределение интенсивности выглядит примерно так же, как и на рис.7.10. Угловой размер центрального светлого пятна (диска Эйри), наблюдаемого из центра круглого отверстия, равен:

. (7.48)