Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy.docx
Скачиваний:
90
Добавлен:
29.03.2016
Размер:
754.14 Кб
Скачать

1. ФЕРМЕНТЫ или энзимы - белки, выполняющие роль катализаторов в живых организмах. Осн. ф-ции ферментов- ускорять превращение в-в, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохим. процессы (напр., реализацию генетич. информации), в т. ч. в ответ на изменяющиеся условия. По рекомендации Международного биохимического союза, Ф. разделяют на 6 классов: 1) оксидоредуктазы, 2) трансферазы, 3) гидролазы, 4) лиазы, 5) изомеразы, 6) лигазы (синтетазы). Рекомендована следующая нумерация Ф. Шифр (индекс) каждого Ф. содержит 4 числа, разделённых точками. Первая цифра указывает класс, вторая – подкласс, третья – подподкласс, четвёртая – порядковый номер в данном подподклассе. Так, Ф. аргиназа, расщепляющий аргинин на орнитин и мочевину, имеет шифр 3.5.3.1, т. е. относится к классу гидролаз, подклассу Ф., действующих на непептидные С–N-cвязи, и подподклассу Ф., расщепляющих эти связи в линейных (не циклических) соединениях.

2.Ферментопатии — болезни и патологические состояния, обусловленные полным отсутствием синтеза ферментов или стойкой функциональной недостаточностью ферментных систем органов и тканей. Среди врожденных ферментопатий наиболее часто встречается недостаточность дисахаридаз (лактазы, сахаразы, изомальтазы и др.), пептидаз (глутеновая энтеропатия), энтерокиназы. Приобретенные ферментопатии могут быть следствием токсического воздействия ксенобиотиков и мутагенов внешней среды, они ответственны за многообразные проявления так называемые экопатологии человека. Приобретенные ферментопатий наблюдаются при заболеваниях (хронический энтерит, болезнь Крона, дивертикулез с дивертикулитом и др.) и резекции тонкой кишки, заболеваниях других органов пищеварения (панкреатит, гепатит, цирроз печени) и органов эндокринной системы (диабет, гипертиреоз), а также при приеме некоторых лекарственных препаратов (антибиотики, цитостатики и др.) и облучении.

Активность фермента выражают количеством субстрата, превращенного ферментом в единицу времени при оптимальных для фермента условиях.

Витамин В2, рибофлавин. Коферментная форма: ФМН и ФАД.

Витамин В3, пантотеновая кислота. Коферментная форма - КоА.

Витамин В5 (PP), никотиновая кислота. Коферментная форма: НАД и НАДФ.

Витамин В12 имеет две коферментные формы: метилкобаламин и 5 - дезоксиаденозилкобаламин.

3. Регуляции синтеза и каталитической активности ферментов:

1. Влияние закона действия масс. В катализируемой ферментом обратимой химической реакции, например А + В <=> С + D, концентрация компонентов реакции и соответственно направление реакции будут регулироваться влиянием закона действия масс. Оно, в частности, может быть показано в обратимой реакции трансаминирования, катализируемой ферментом аланинаминотрансферазой: Аланин + α-Кетоглутарат <=> Пируват + Глутамат.

2. Изменение количества фермента. На бактериях хорошо изучен феномен индуцированного синтеза ферментов при выращивании их на среде, где единственным источником углерода и энергии служит тот или иной углевод, например глюкоза. Замена в среде глюкозы на лактозу приводит к индуцированному или адаптивному синтезу фермента галактозидазы, расщепляющей лактозу на глюкозу и галактозу.

3. Проферменты. Протеолитические ферменты пищеварительного тракта, а также поджелудочной железы синтезируются в неактивной форме – в виде проферментов (зимогенов). Регуляция в этих случаях сводится к превращению проферментов в активные ферменты под влиянием специфических агентов или других ферментов – протеиназ.

4. Химическая модификация фермента. Некоторые белки при формировании третичной структуры подвергаются постсинтетической химической модификации. Оказалось, что активность ряда ключевых ферментов обмена углеводов, в частности фосфорилазы, гликогенсинтазы и др., также контролируется путем фосфорилирования и дефосфорили-рования, осуществляемого специфическими ферментами – протеинкиназой и протеинфосфатазой, активность которых в свою очередь регулируется гормонами.

5. Аллостерическая регуляция. Во многих строго биосинтетических реакциях основным типом регуляции скорости многоступенчатого ферментативного процесса является ингибирование по принципу обратной связи. Это означает, что конечный продукт биосинтетической цепи подавляет активность фермента, катализирующего первую стадию синтеза, которая является ключевой для данной цепи реакции. Поскольку конечный продукт структурно отличается от субстрата, он связывается с аллостерическим (некаталитическим) центром молекулы фермента, вызывая ингибирование всей цепи синтетической реакции.

6. Другие типы регуляции активности ферментов. Абсолютное количество присутствующего в клетке фермента регулируется временем его синтеза и распада. К регуляторным механизмам могут быть отнесены также конкуренция ферментов за общий субстрат, выключение активности одного из изоферментов (у множественных форм ферментов), влияние концентраций кофакторов и явление компартментализации.

Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкие изменения пространственной третичной структуры молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата.

Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структуру субстрата, но несколько отличающуюся от структуры истинного субстрата. Такое ингибирование основано на связывании ингибитора с активным центром.

Неконкурентное обратимое ингибирование не может быть ослаблено или устранено повышением концентрации субстрата, так как эти ингибиторы присоединяются к ферменту не в активном центре, а в другом месте.

4. Окисление биологическое (клеточное или тканевое дыхание) — окислительно-восстановительные реакции, протекающие в клетках организма, в результате которых сложные органические вещества окисляются при участии специфических ферментов кислородом, доставляемым кровью. Конечными продуктами биологического окисления являются вода и двуокись углерода.

Реакции отщепления водорода осуществляются ферментами класса дегидрогеназ, причем атомы водорода (т. е. протоны + электроны) присоединяются к коферментам: никотинамидадениндинуклеотиду (НАД), никотинамидадениндинуклеотид-фосфату (НАДФ), флавинадениндинуклеотиду (ФАД) и др.

Оксидоредуктазы - класс ферментов, катализирующихокислительно-восстановительные реакции. Играют важную роль в обеспеченииклеток энергией. Важнейшие группы оксидоредуктаз: дегидрогеназы,гидроксилазы, оксигеназы, оксидазы, пероксидазы.

Оксидоредуктазы катализируют биохимические процессы, сопровождающиеся выделением энергии.

Оксидоредуктазы чрезвычайно важны для клетки, так как с их помощью осуществляются определенные экзотермические реакции, в результате которых бактерии получают энергию, необходимую для их жизнедеятельности.

Оксидоредуктазы ускоряют протекание химических процессов, связанных с высвобождением энергии.

Оксидоредуктазы ускоряют химические процессы, протекающие в клетке, в результате которых высвобождается энергия. Процессы окисления неразрывно связаны с фосфорилированием органических веществ, так называемым окислительным фосфо-рилированием, - объединенным процессом переноса электронов и аккумуляции энергии дыхания вследствие эстерификации неорганического фосфата в макроэргические соединения типа АТФ.

Анаэробные дегидрогеназы являются двухкомпонентными ферментами и легко диссоциируют при диализе, распадаясь на более активные коферменты. Коферментами являются никотинамидаде-ниндинуклеотид (НАД) и никотинамидадениндинуклеотидфосфат (НАДФ). Эти коферменты очень реакционноспособны в окислительно-восстановительных системах. Они играют важную роль в процессе алкогольного брожения.

Анаэробные дегидрогеназы являются двухкомпонентными ферментами и легко диссоциируют при диализе, распадаясь на более активные коферменты. Коферментами являются никотинамидаде-ниндинуклеотид (НАД) и никотинамидадениндинуклеотидфосфат (НАДФ). Эти коферменты очень реакционноспособны в окислительно-восстановительных системах. Они играют важную роль в процессе алкогольного брожения.

5. Аденозинтрифосфа́т— нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

Субстратное фосфорилирование - синтез богатых энергией фосфорных соединений за счёт энергии окислительно-восстановительных реакций Гликолиза (катализируемых фосфоглицеральдегиддегидрогеназой и енолазой) и при окислении α-кетоглутаровой кислоты в Трикарбоновых кислот цикле (под действием α-кетоглутаратдегидрогеназы и сукцинаттиокиназы). Для бактерий описаны случаи С. ф. при окислении пировиноградной кислоты. С. ф., в отличие от фосфорилирования в цепи переноса электронов (см. Окислительное фосфорилирование), не ингибируется «разобщающими» ядами (например, динитрофенолом) и не связано с фиксацией ферментов в мембранах митохондрий. Вклад С. ф. в клеточный фонд АТФ в аэробных условиях значительно меньше, чем вклад фосфорилирования в цепи переноса электронов.

Окислительное фосфорилирование — один из важнейших компонентов клеточного дыхания, приводящего к получению энергии в виде АТФ. Субстратами окислительного фосфорилирования служат продукты расщепления органических соединений — белки, жиры и углеводы.

Однако чаще всего в качестве субстрата используются углеводы. Так, клетки головного мозга не способны использовать для дыхания никакой другой субстрат, кроме углеводов.

Коэффициент фосфорилирования

В расчете на каждый атом поглощенного кислорода (или на каждую пару переносимых электронов) митохондрии образуют максимум три молекулы АТФ (т. е. связывают три молекулы Н3Р04 с АДФ). Отношение количества связанной Н3Р04к( Скачано с dsmahelp.org.ua) количеству поглощенного кислорода (О) называют коэффициентом фосфорили-рования и обозначают Р/О; следовательно, коэффициент Р/О < 3. ФАД-зависи-мые дегидрогеназы мембраны митохондрий не являются протонными насосами (см. рис. 8.4): в этом случае в цепи переноса электронов действуют только два пункта перекачки протонов — комплексы III и IV, и коэффициент Р/О не может быть больше двух.

6. Общие пути катаболизма.

Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспеченную участием многих взаимосвязанных ферментативных систем, и включает два неразрывных процесса анаболизм и катаболизм.

Он выполняет три специализированные функции:

Энергетическая – снабжение клетки химической энергией,

Пластическая – синтез макромолекул как строительных блоков,

Специфическая – синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.

Также для биосинтеза некоторых веществ (жирные кислоты, холестерол) требуются богатые энергией атомы водорода – их источником является НАДФН. Молекулы НАДФН образуются в реакциях окисления глюкозо-6-фосфата в пентозном пути и оксалоацетата малик-ферментом. В реакциях анаболизма НАДФН передает свои атомы водорода на синтетические реакции и окисляется до НАДФ. Так формируется НАДФ-НАДФН-цикл.

Катаболизм – расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии "перехватывается" коферментами окислительных реакций НАД и ФАД, некоторая часть сразу используется для синтеза АТФ.

Следует заметить, что атомы водорода, высвобождаемые в реакциях окисления веществ, могут использоваться клеткой только по двум направлениям:

на анаболические реакции в составе НАДФН.

на образование АТФ в митохондриях при окислении НАДН и ФАДН2 .

Весь катаболизм условно подразделяется на три этапа:

I этап

Происходит в кишечнике (переваривание пищи) или в лизосомах при расщеплении уже ненужных молекул. При этом освобождается около 1% энергии, заключенной в молекуле. Она рассеивается в виде тепла.

II этап

Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются в пировиноградную кислоту, ацетильную группу (в составе ацетил-S-КоА) и в некоторые другие мелкие органические молекулы. Локализация второго этапа – цитозоль и митохондрии.

Часть энергии рассеивается в виде тепла и примерно 13% энергии вещества усваивается, т.е. запасается в виде макроэргических связей АТФ.

III этап

Все реакции этого этапа идут в митохондриях. Ацетил-SКоА включается в реакции цикла трикарбоновых кислот и окисляется до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД и восстанавливают их. После этого НАДН и ФАДН2 переносят водород в цепь дыхательных ферментов, расположенную на внутренней мембране митохондрий. Здесь в результате процесса под названием "окислительное фосфорилирование" образуется вода и главный продукт биологического окисления – АТФ.

Часть выделенной на этом этапе энергии молекулы рассеивается в виде тепла и около 46% энергии исходного вещества усваивается, т.е. запасается в связях АТФ и ГТФ.

7. Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ.

Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО2 + АТФ = Оксалацетат(субстрат Цикла Кребса) + АДФ + Фн.

Функции

Интегративная функция — цикл является связующим звеном между реакциями анаболизма и катаболизма.

  • Катаболическая функция — превращение различных веществ в субстраты цикла:

  • Жирные кислоты, пируват,Лей,Фен — Ацетил-КоА.

Арг, Гис, Глу — α-кетоглутарат.

Фен, тир — фумарат.

  • Анаболическая функция — использование субстратов цикла на синтез органических веществ:

Оксалацетат — глюкоза, Асп, Асн.

Сукцинил-КоА — синтез гема.

CО2 — реакции карбоксилирования.

  • Водорододонорная функция — цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н+ и одного ФАДН2.

  • Энергетическая функция — 3 НАДН.Н+ дает 7.5 моль АТФ, 1 ФАДН2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

8. Глико́лиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата), гликолиз в анаэробных условиях ведёт к образованию молочной кислоты (лактата). Гликолиз является основным путём катаболизма глюкозы в организме животных.

Результат

Результатом гликолиза является превращение одной молекулы глюкозы в две молекулы пировиноградной кислоты (ПВК) и образование двух восстановительных эквивалентов в виде кофермента НАД∙H.

Полное уравнение гликолиза имеет вид:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 2Н+.

При отсутствии или недостатке в клетке кислорода пировиноградная кислота подвергается восстановлению до молочной кислоты, тогда общее уравнение гликолиза будет таким:

Глюкоза + 2АДФ + 2Фн = 2лактат + 2АТФ + 2H2O.

Таким образом, при анаэробном расщеплении одной молекулы глюкозы суммарный чистый выход АТФ составляет две молекулы, полученные в реакциях субстратного фосфорилирования АДФ.

У аэробных организмов конечные продукты гликолиза подвергаются дальнейшим превращениям в биохимических циклах, относящихся к клеточному дыханию. В итоге после полного окисления всех метаболитов одной молекулы глюкозы на последнем этапе клеточного дыхания — окислительном фосфорилировании, происходящем на митохондриальной дыхательной цепи в присутствии кислорода, — дополнительно синтезируются ещё 34 или 36 молекулы АТФ на каждую молекулу глюкозы.

Значение

Гликолиз — катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

9. Глюкозо-лактатный цикл (цикл Кори) - Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу.

Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

Аланин (2-аминопропановая кислота) — алифатическая аминокислота.

α-Аланин входит в состав многих белков, β-аланин — в состав ряда биологически активных соединений.

Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Химические свойства

взаимодействие с основаниями

NH2-C2H4-COOH + NaOH → NH2-C2H4-COONa + H2O

взаимодействие с кислотами

NH2-C2H4-COOH + HCl → HOOC-C2H4-NH2•HCl

взаимодействие со спиртами

NH2-C2H4-COOH + C2H5OH → NH2-C2H4-CO-С2Н5 + H2O

образование пептидной связи

NH2-C2H4-COOH + NH2-C2H4-COOH → NH2-C2H4-CO-NH-C2H4-COOH + H2O

10. Обмен гликогена

Гликоген обнаруживается в цитоплазме и ядрах клеток в виде прозрачных капель. Он хорошо растворим в воде. Поэтому ткани, исследуемые па гликоген, необходимо предохранять от воздействия водных растворов и фиксировать в безводном спирте, ацетоне и др. Правильнее говорить не о гликогене, а о гликогенах с различной степенью полимеризации и растворимости. В связи с этим возникают трудности в гистохимическом его изучении.

Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С1 УДФ-глюкозы к С4 концевых остатков гликогена;

4. Амило-α1,4-α1,6-гликозилтрансфераза,"гликоген-ветвящий" фермент – переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

Фермент фосфорилаза, регулирующий распад гликогена, существует в двух формах: неактивной фосфорилазы b и высокоактивной фосфорилазы a. Превращение неактивной фосфорилазы b в активную фосфорилазу a происходит в результате реакции переноса фосфатной группы с АТФ на OH-группу серина — одной из аминокислот в белковой цепи фермента. Для этой реакции переноса необходим еще один фермент — специфическая киназа, а также специфический кофактор — циклическая адениловая кислота. Подготовительным этапом при активации фосфорилазы является образование из АТФ циклической адениловой кислоты; эта реакция происходит при участии фермента аденилциклазы, связанной с мембранами клеток. Активность аденилциклазы стимулируется гормонами адреналином или глюкагоном. Благодаря этому сложному механизму оба гормона вызывают повышение содержания сахара в крови млекопитающих.

Биологическое значение обмена гликогена в печени и мышцах

Сравнение этих процессов позволяет сделать следующие выводы:

  • синтез и распад гликогена протекают по разным метаболическими путям;

  • печень запасает глюкозу в виде гликогена не столько для собственных нужд, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани. Присутствие в печени глюкозо-6-фосфатазы обусловливает эту главную функцию печени в обмене гликогена;

  • функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии;

  • синтез гликогена - процесс эндергонический. Так на включение одного остатка глюкозы в полисахаридную цепь используется 1 моль АТФ и 1 моль УТФ;

  • распад гликогена до глюкозо-6-фосфата не требует энергии;

  • необратимость процессов синтеза и распада гликогена обеспечивается их регуляцией.

11. Пентозо-фосфатный путь расщепления глюкозы: протекает в цитоплазме клеток и включает две стадии: 1) окислительная 2)неокислительная.

В ходе окислительноо этапа образуются НАДФН, а также фосфорилированные пентозы.

Неокислительная стадия: в ней происходит превращение пентоз, при этом образуются промежуточные продукты С3,С4,С6 углеродных атомов. В пентозо-фосфатном пути, в который вступают 6 молекул глюкозы, одна расщепляется до СО2, а остальные регенирируются.

Окислительная стадия:

1. Глюкозо-6-фосфат + 6 НАДФ = 6-Фосфоглюко-нолактон + 6 НАДФН + 6Н+

2. 6-Фосфоглюконолактон=6-Фосфоглюконат

3. 6-Фосфоглюконат + 6 НАДФ=6 Риболозо-5-фосфат + 6 НАДФН + 6 H+ + 6CO2

4. 2 Рибулозо-5-фосфат=2 Рибозо-5-фосфат

5. 4 Рибулозо-5-фосфат = 4 2-Ксилулозо-5-фосфат

Значение пентозо-фосфатного пути: Образование пентозы используется для синтеза нуклеотканных коферментов, мононуклеотидов( АМФ, УМФ, ЦМФ, ТМФ) и нуклеиновых кислот.

Пентозо-фосфатный путь сост. 50% НАДФН необходимого организму. ПФП наиболее активен в печени, жировой ткани, коре надпочечников, щитовидной железе, эритроцитах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]