Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Петрология / Сущность кристаллизационной дифференциации

.doc
Скачиваний:
30
Добавлен:
29.03.2016
Размер:
47.62 Кб
Скачать

Сущность кристаллизационной дифференциации

Поднимаясь к поверхности и частично затвердевая, мантий­ные магмы обычно испытывают дифференциацию, в процессе которой состав жидкой фазы меняется по сравнению с первичным. Механизм дифференциации может сводиться к отделению твер­дых фаз от остаточного расплава в ходе кристаллизации, разделению расплава на две несмешивающиеся жидкости контрастного соста­ва и их расслоению по плотности, обогащению локальных зон маг­матических камер теми или иными химическими элементами путем термбдиффузии (эффект Соре) или переноса компонентов в газо­вой фазе.

Главное значение имеет кристаллизационная дифференциа­ция, связанная с разделением (фракционированием) твердых и жид­ких фаз. Как было показано в предыдущем разделе, первичные мантийные магмы в момент зарождения близки к многокомпо­нентным котектикам высокого давления. При кристаллизации та­ких магм в условиях низкого давления состав остаточного распла­ва также стремится к котектике. Однако поля устойчивости минералов и пропорции фаз в котектиках меняются как функция давления. Поэтому кристаллизация первичной мантийной магмы, перемещенной на малые глубины, начинается с выделения твердых фаз, избыточных по отношению к котектике низкого давления. Ес­ли отделить кристаллические фазы от жидкости, то ее состав ока­жется иным по сравнению с составом первичной магмы. В этом и заключается сущность кристаллизационной дифференциации — одного из важнейших петрогенетических механизмов, впервые предложенного еще Ч.Дарвиным и изученного в начале XX века американским петрологом-экспериментатором Н.Боуэном.

Принцип кристаллизационной дифференциации можно на­глядно иллюстрировать двойной фазовой диаграммой с эвтектикой (рис. 6.3). Если на глубине зарождается эвтектический расплав Et, который поднимается к поверхности и начинает кристаллизовать­ся на меньшей глубине, где фазовые соотношения меняются (пунк­тирные линии), то из этого расплава начинают выделяться кристал- лы В, а остаточный расплав стремится к составу Е2. Если механически отделить л и кристаллы, то жидкость Е2 и будет пред­ставлять дифференциал первичного расплава Ег

Ход кристаллизационной дифференциации определяется физи- ко-химическими равновесиями «кристаллы—жидкость» на уров­нях зарождения и затвердевания расплавов, а также механикой раз­деления твердых и жидких фаз в пространстве.

Поскольку равновесия между кристаллами и расплавом при за­твердевании магм на малых глубинах отличаются от равновесий

в источнике первич­ных магм, то состав и количество твердых фаз, которые выделя­ются в условиях низ­кого давления, отли­чаются от состава и пропорций минера­лов, израсходованных в процессе частично­го плавления.

При плавлении мантийных перидоти­тов на глубине более 60 км в расплав пере­ходят главным обра­зом клинопироксен и фанат. Если расплав перемещается в область меньшего давления, то нормативный фанат, который содержится в расплаве, вступает в химическую реакцию с нормативным оливином и образуется шпинель:

Mg3Al2Si3012 + Mg2Si04 = MgAl204 + 4MgSi03

пироп форстерит шпинель энстатит

Поэтому в интервале глубин от 60 до 25 км из расплава при ох­лаждении выделяется не фанат, а шпинель. На меньшей глубине нормативные шпинель, энстатит и клинопироксен реагируют друг с другом с образованием плагиоклаза:

MgAl204 + 2MgSi03 + CaMgSi206 = CaAl2Si208 + 2Mg2Si04;

шпинель энстатит диопсид анортит форстерит

2MgSi03 + NaAISi306 = NaAISi308 + Mg2Si04:

энстатит жадеит альбит форстерит

2MgSi03 + CaAlSi206 = CaAl2Si208 + Mg2Si04

энстатит Са-чермнкит анортит форстерит

Вследствие этого на глубине менее 25 км становится возможной кристаллизация плагиоклаза — минерала, которого нет в мантий­ных перидотитах и который не выделяется из первичной мантийной магмы на большей глубине, где все его составные части (Са, Na, А1, Si) заключены в клинопироксене, шпинели или фанате.

По мере снижения давления доля оливина в котектике 01 + Срх + Орх = L снижается (см. раздел 6.1), и оливин во все боль­шем количестве выделяется как избыточная по отношению к котек­тике твердая фаза. Поэтому в условиях низкого давления кристал­лизация первичных мафических и ультрамафических мантийных магм начинается с выделения оливина. Дальнейшее снижение тем­пературы в изобарических условиях приводит к кристаллизации минерального парагенезиса 01 + Р1 + Срх. Ранний оливин, который появился на ликвидусе первичной магмы, при понижении темпе­ратуры иногда исчезает вследствие перитектических реакций с рас­плавом, приводящих к образованию орто- или клинопироксена, а на больших глубинах — и граната.

Кристаллизационная дифференциация происходит в системе промежуточных камер, которые заполняются мантийными магма­ми при их подъеме к поверхности Земли. Вследствие высокой плот­ности магматических жидкостей мантийного происхождения (см. раздел 3.1) значительная их часть, вероятно, скапливается в ос­новании земной коры. Промежуточные камеры формируются и вы­ше вплоть до приповерхностной зоны, как это установлено, на­пример, под вулканами Гавайских островов.

Промежуточные камеры периодически разгружаются при пере­мещении расплава на меньшую глубину и пополняются новыми порциями магмы из более глубинных источников. В периоды «по­коя» в камерах происходит частичная кристаллизация расплава с выделением твердых фаз, плотность которых отличается от плот­ности окружающей жидкости. Оливин, пироксен и другие минера­лы, имеющие более высокую плотность по сравнению с магмати­ческой жидкостью4, могут погружаться, образуя скопления в нижних частях камер, а кристаллы плагиоклаза более кислые, чем Ап75, будучи относительно легкими, наоборот, могут всплывать и концентрироваться вблизи кровли магматических камер.

Скорость стационарного погружения или всплывания кристал­лов в магме (V) может быть оценена с помощью уравнения Стокса: V=2gbpt*/9t],

где g ускорение силы тяжести; Ар — разность плотностей твердой и жидкой фаз; г — радиус твердых частиц, имеющих сферическую форму; г\ — вязкость. Для кристаллов несферической формы вво­дятся поправочные коэффициенты.

Если принять, что г] = 100 Па • с (типичная величина для базаль­товой магмы), Ар =3.5-2.7=0.8 г/см3 (разность плотностей оливи­на и базальтового расплава), г = 1 мм, то V— 3 см/ч (-270 м/год). Этот пример показывает, что гравитационное осаждение оливина и других минералов с повышенной плотностью может служить эф­фективным механизмом кристаллизационной дифференциации.

Гравитационному разделению кристаллов и жидкой фазы в при­родных условиях препятствует то обстоятельство, что многие маг­мы при температуре ниже ликвидуса обладают пределом текучести, и соотношения между касательными напряжениями и градиента­ми скоростей описываются не уравнением Ньютона dF/dS = = -r\(dV/dX), а уравнением Бингема: dF/dS = T0-ri(dV/dX), где т0 — предел текучести. Пока касательные напряжения не превысят т0, пе­ремещения твердых частиц относительно жидкой фазы не проис­ходит. Вследствие этого в расплаве погружаются лишь достаточно крупные кристаллы, а мелкие твердые частицы остаются во взве­шенном состоянии.

Как показывают геологические наблюдения, размер кристаллов оливина и некоторых других минералов, которые выделяются из ос­новных и ультраосновных магм, обычно достаточен для их грави­тационного осаждения. Этот процесс может протекать не только в крупных магматических камерах, но и в небольших телах, напри­мер, в отдельных «подушках» базальтовых пиллоу-лав. Осаждение кристаллов приводит к обеднению расплава теми компонентами, которые содержатся в кристаллических фазах, и состав жидкости су­щественно отклоняется от первоначального.

В зависимости ог состава первичной мантийной магмы и Р—Тус­ловий ее кристаллизации возникают разные серии дифференциатов. Так, дифференциация низкощелочных пикритов и пикробазаль- тов, обусловленная отделением от первичных магм оливина, хромо­вой шпинели, клинопироксена и высококальциевого плагиоклаза, приводит к возникновению серий дифференциатов, которые завер­шаются низкомагнезиальными толеитовыми базальтами и габбро. Дифференциация умсреинощелочных пикробазальтов, содержа­щих до 10 мас.% нормативного нефелина, смещает состав магмати­ческих жидкостей в сторону грахибазальта-трахита (монцонита- сиенита), а серии дифференциатов высокощелочных оливиновых меланефелинитов могут заканчиваться фонолитами и нефелино­выми сиенитами. При этом в умеренно- и высокощелочном рядах обособляются натриевые и калиевые дифференцированные серии.

Поскольку кристаллизационная дифференциация является не­избежным процессом, сопровождающим подъем к поверхности Земли основных и ультраосновных расплавов, на малых глубинах наиболее распространены продукты затвердевания не первичных мантийных магм, а их дифференциатов, которые образуются на относительно небольшой глубине. К таким дифференциатам отно­сятся, например, толеитовые базальты с низким содержанием маг­ния, в том числе кварцевые толеиты, широко развитые среди трап­пов и других континентальных магматических ассоциаций (см. табл. 6.2). Базальты океанического дна, которые представлены оливиновыми толеитами, содержащими около 8 мас.% MgO (см. табл. 6.2), также ипытали заметное фракционирование оли­вина и других минералов, что привело к отклонению первичного со­става расплава, который был более магнезиальным.

Толеитовые базальты, занимающие большие объемы на суше и морском дне, весьма однообразны по химическому и минерально­му составам, что обусловлено не столько однородностью мантийно­го источника и условий зарождения первичных магм, сколько суще­ствованием своеобразного (фильтра в виде системы промежуточных камер-отстойников, пройдя через который расплавы приобретают состав, отвечающий равновесию кристаллы—жидкость при низком давлении. При этом ранние относительно тугоплавкие и тяжелые кристаллические фазы скапливаются в придонных частях промежу­точных камер, а более легкоплавкие и менее плотные остаточные расплавы перемещаются вверх и достигают дневной поверхности. Такая модель подтверждается отсутствием глубинных включений мантийного происхожден и я в низкомагнезиальных толеитовых ба­зальтах. Подобные включения содержатся только в более богатых магнезией щелочных оливиновых базальтах и других недосыщен- ных кремнеземом породах, близких по составу к первичным магмам.

Составы пород, образующих серии дифференциатов, располо­жены вдоль котектических линий, которым соответствуют термаль­ные «долины» на поверхности ликвидуса. Долины разделены тер­мальными барьерами («водоразделами»), которые препятствуют переходу от одного тренда дифференциации к другому. В условиях низкого давления таким барьером служит, например, плоскость 01-Срх-Р1 в базальтовом тетраэдре Ne-01-Cpx-Q, которая разде­ляет объемы насыщенных и не насыщенных кремнеземом бази- тов. При дифференциации первичных магм, насыщенных крем­неземом, составы остаточных расплавов смещаются в сторонуриолита, а при дифференциации недосыщенных кремнеземом магм — в сторону фонолита. Очень небольшие различия в составе первичных магм вблизи термального барьера могут привести к по­явлению существенно разных дифференциатов.