Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Геохимия / Ртуть / Ртуть Википедия

.doc
Скачиваний:
38
Добавлен:
29.03.2016
Размер:
55.81 Кб
Скачать

Внешний вид простого вещества

Тяжёлая жидкость серебристо-белого цвета

Свойства атома

Имя, символ, номер

Ртуть / Hydrargyrum (Hg), 80

Атомная масса

(молярная масса)

200,59 а. е. м. (г/моль)

Электронная конфигурация

[Xe] 4f14 5d10 6s2

Радиус атома

157 пм

Химические свойства

Ковалентный радиус

149 пм

Радиус иона

(+2e) 110 (+1e) 127 пм

Электроотрицательность

2,00 (шкала Полинга)

Электродный потенциал

Hg←Hg2+ 0,854 В

Степени окисления

+2, +1

Энергия ионизации

(первый электрон)

1 006,0 (10,43) кДж/моль (эВ)

Термодинамические свойства простого вещества

Плотность (при н. у.)

13,546 (@ +20 °C) г/см³

Температура плавления

234,28 K

Температура кипения

629,73 K

Теплота плавления

2,295 кДж/моль

Теплота испарения

58,5 кДж/моль

Молярная теплоёмкость

27,98[1] Дж/(K·моль)

Молярный объём

14,8 см³/моль

Кристаллическая решётка простого вещества

Структура решётки

ромбоэдрическая

Параметры решётки

ahex=3,464 сhex=6,708 Å

Отношение c/a

1,94

Температура Дебая

100,00 K

Прочие характеристики

Теплопроводность

(300 K) 8,3 Вт/(м·К)

80 Ртуть

Hg

200,59

4f145d106s2

Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum). Простое вещество ртуть (CAS-номер: 7439-97-6) — переходный металл, при комнатной температуре представляет собой тяжёлую серебристо-белую заметно летучую жидкость, пары которой чрезвычайно ядовиты. Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром). В природе находится как в самородном виде, так и образует ряд минералов. Чаще всего ртуть получают путём восстановления из её наиболее распространённого минерала — киновари. Применяется для изготовления измерительных приборов, вакуумных насосов, источников света и в других областях науки и техники.Содержание [убрать]

1 История

1.1 Происхождение названия

2 Соединения ртути

3 Распространённость в природе

3.1 В окружающей среде

4 Получение

5 Физические свойства

6 Химические свойства

7 Применение

7.1 Медицина

7.2 Техника

7.3 Металлургия

8 Токсикология ртути

8.1 Гигиеническое нормирование концентраций ртути

8.2 Демеркуризация

9 Примечания

10 См. также

11 Ссылки

[править]

Происхождение названия

Русское название ртути происходит от праславянского причастия *rьtǫtь, связанного с лит. rìsti «катиться».

[править]

Соединения ртути

Ртуть и её соединения применяются в технике, химической промышленности, медицине. Желтый оксид ртути (II) входит в состав глазной мази и мазей для лечения кожных заболеваний. Красный оксид ртути (II) применяется для получения красок. Хлорид ртути (I), который называется каломель, используется в пиротехнике, а также в качестве фунгицида. В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата. Хлорид ртути (II), который называется сулема, является очень токсичным. Сулема применялась в медицине как дезинфицирующее средство, в технике она используется для обработки дерева, получения некоторых видов чернил, травления и чернения стали. В сельском хозяйстве сулема применяется как фунгицид. Амидохлорид ртути (белый преципитат ртути) входит в состав некоторых мазей. В ветеринарии амидохлорид ртути применяется как средство против паразитарных заболеваний кожи. Нитрат ртути (II) применяется для отделки меха и получения других соединений этого металла. Токсичность нитрата ртути (II) примерно такая же, как и токсичность сулемы. Многие органические соединения ртути используются в качестве пестицидов и средств для обработки семян. Отдельные органические соединения ртути применяются как диуретические средства.

[править]

Распространённость в природе

Ртуть относительно редкий элемент в Земной коре со средней концентрацией 83 мг/т. Однако в виду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть растворимы в воде даже при отсутствии сильных окислителей, но при их наличии ([Fe2(SO4)3], озон, перекись водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS • nNa2S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями.[2]

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7. В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся прежде всего самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2. На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.

[править]

В окружающей среде

Уровень ртути в ледниках за 270 лет

До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограмма на литр льда. Природные источники, такие как вулканы, составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.

Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.

[править]

Получение Этот раздел не завершён.

Вы поможете проекту, исправив и дополнив его.

Ртуть получают сжиганием киновари (Сульфида ртути (II)). Этот способ применяли алхимики древности. Уравнение реакции горения киновари: HgS+O2→Hg+SO2

В России известны 23 месторождения ртути, промышленные запасы составляют 15,6 тыс.тонн (на 2002 год). Словенский город Идрия — крупнейший в Европе центр добычи ртути с XV века[источник?].

[править]

Физические свойства

Переливание ртути из сосуда в сосуд

Ртуть — единственный металл, жидкий при комнатной температуре. Обладает свойствами диамагнетика. Образует со многими металлами жидкие сплавы — амальгамы. Не амальгамируются лишь железо, марганец и никель[источник не указан 369 дней].

[править]

Химические свойства

Ртуть — малоактивный металл (см. ряд напряжений).

При нагревании до 300 °C ртуть вступает в реакцию с кислородом: 2Hg + O2 → 2HgO Образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ. Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.

При нагревании ртути с серой образуется сульфид ртути(II).

Ртуть не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке и азотной кислоте, образуя соли двухвалентной ртути. При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg2(NO3)2.

Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d10 — электронной оболочки, что приводит к возможности существования соединений ртути (+4). Так, кроме малорастворимого Hg2F2 и разлагающегося водой HgF2 существует и HgF4, получаемый при взаимодействии атомов ртути и смеси неона и фтора при температуре 4К[3].

[править]

Применение

Словенский город Идрия — крупнейший в Европе центр добычи ртути с XV века

[править]

Медицина

В связи с высокой токсичностью ртуть почти полностью вытеснена из медицинских препаратов.

В XIX веке врачи лечили ртутью раны и венерические болезни. Соединения ртути использовались как антисептик (сулема), слабительное (каломель).

Мертиолят как консервант для вакцин.

Амальгаму серебра применяют в стоматологии в качестве материала зубных пломб.

Ртуть-203 (T1/2 = 53 сек) используется в радиофармакологии.

[править]

Техника

Ртуть применяется в термометрах. Сплав ртути с таллием используется для низкотемпературных термометров.

До середины 20 века ртуть широко применялась в барометрах и манометрах.

Ртутные вакуумные насосы были основными источниками вакуума в 19 и начале 20 веков.

Парами ртути наполняются ртутно-кварцевые и люминесцентные лампы.

Ртуть используется в датчиках положения.

В некоторых химических источниках тока (например, ртутно-цинковых), в эталонных источниках напряжения (Вестона элемент).

Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках[4].

Ртуть используется в качестве балласта в подводных лодках и регулирования крена и дифферента некоторых аппаратов.[источник не указан 489 дней]

Ртуть ранее входила в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде. Сейчас запрещается использовать такого типа покрытия.

Иодид ртути используется как полупроводниковый детектор радиоактивного излучения.

Фульминат ртути («Гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).

Бромид ртути применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).

Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.

Соединения ртути использовались в шляпном производстве.

[править]

Металлургия

Металлическая ртуть применяется для получения целого ряда важнейших сплавов.

Ранее различные амальгамы металлов, особенно амальгамы золота и серебра, широко использовались в ювелирном деле, в производстве зеркал.

Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей.

Ртуть используется для переработки вторичного алюминия и добычи золота (см. амальгамация).

[править]

Токсикология ртути

Пары́ ртути, а также металлическая ртуть очень ядовиты, могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании — дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути.

Органические соединения ртути (метилртуть и др.) в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма.

Подробнее смотрите статью отравление ртутью.

[править]

Гигиеническое нормирование концентраций ртути

Предельно допустимые уровни загрязнённости металлической ртутью и её парами[1]:

ПДК в населенных пунктах (среднесуточная) — 0,0003 мг/м³

ПДК в жилых помещениях (среднесуточная) — 0,0003 мг/м³

ПДК воздуха в рабочей зоне (макс. разовая) — 0,01 мг/м³

ПДК воздуха в рабочей зоне (среднесменная) — 0,005 мг/м³

ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) — 0,005 мг/мл

ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоемов — 0,0005 мг/л

ПДК рыбохозяйственных водоемов — 0,00001 мг/л

ПДК морских водоемов — 0,0001 мг/л

ПДК в почве — 2,1 мг/кг

[править]

Демеркуризация

Основная статья: Демеркуризация

Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы. Так, например, если разбился градусник, следует тщательно собрать все шарики ртути медицинской клизмой в стеклянную банку с герметичной крышкой, а щели и неровности засыпать порошком серы (S). Сера легко вступает в химическую реакцию со ртутью при комнатной температуре, образуя ядовитое, но не летучее соединение HgS.

[править]

Примечания

↑ Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т.. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 278. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8

↑ Вольфсон Ф. И., Дружинин А. В. Главнейшие типы рудных месторождений. М., "Недра", 1975, 392 с.

↑ Получен фторид Hg(IV): Новости химии @ChemPort.Ru

↑ Приборостроение и автоматизация. Справочник. Изд. «Машиностроение» М. 1964