Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
контр раб химия радиоиат.docx
Скачиваний:
140
Добавлен:
14.01.2017
Размер:
76.44 Кб
Скачать

1.3 Полупроводниковые материалы.

1. ширина запрещённой зоны, подвижность носителей тока, температура плавления

Ширина Запрещённой зоны — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Подвижность носителей заряда — коэффициент пропорциональности между дрейфовой скоростью носителей и приложенным внешним электрическим полем. Определяет способность электронов и дырок в металлах и полупроводниках реагировать на внешнее воздействие.

Температу́ра  плавле́ния и отвердева́ния — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот.

2. Важнейшая область применения полупроводниковых материалов — микроэлектроника. Дальнейший прогресс в повышении быстродействия и в снижении потребляемой мощности связан с созданием интегральных схем на основе GaAs, InP и их твёрдых растворов с др. соединениями типа АIIIВV. В больших масштабах используют полупроводниковые материалы для изготовления «силовых» полупроводниковых приборов (вентили, тиристоры, мощные транзисторы). Здесь также основным материалом является Si, а дальнейшее продвижение в область более высоких рабочих температур связано с применением GaAs, SiC и др. широкозонных полупроводниковых материалов.

3. Собственный полупроводник или полупроводник i-типа или нелегированный полупроводник (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов, так как она определяется не легированием, а собственными свойствами материала, а именно термически возбуждёнными носителями, излучением и собственными дефектами.

4. Донорные полупроводники — примесь в кристаллической решётке, которая отдаёт кристаллу электрон. Вводится при ковалентном типе связи. Бывают однозарядные и многозарядные доноры.

5. Акце́пторные полупроводники — в физике твёрдого тела (см. также полупроводники) примесь в кристаллической решётке, которая придаёт кристаллу дырочный тип проводимости при которой носителями заряда являются дырки. Термин имеет смысл при ковалентном типе связей в кристалле. Акцепторы бывают однозарядными и многозарядными.

6. Полупроводник, не содержащий примесей, в нормальных условиях обладает так называемой собственной проводимостью или проводимостью типа i. Собственная проводимость обусловлена генерацией пар “электрон-дырка” . Если концентрация электронов в зоне проводимости – ni , а дырок в валентной зоне – pi и ni = pi,то собственная проводимость полупроводника:

σi = ni е (μn + μp) (3.6)

В примесном полупроводнике n ¹ p, поэтому электропроводность выражается следующей формулой:

                                                          σ = е (μnn + μpp) (3.7)

7. Дрейфовый ток

Электроны и дырки  в кристалле находятся в состоянии  хаотического теплового движения. При  возникновении электрического поля на хаотическое движение накладывается компонента направленного движения, обусловленная действием этого поля. В результате электроны и дырки начинают перемещаться вдоль кристалла – возникает электрический ток, который называют дрейфовым.

Диффузионный ток

Причиной, вызывающей ток  в полупроводнике, может быть не только электрическое поле, но и градиент концентрации подвижных носителей заряда.

Если тело электрически нейтрально и в любой его микрообласти суммарный положительный и отрицательный  заряд равен нулю, то различие в  концентрациях носителей заряда в соседних областях не приведет к появлению электрического тока и электрических сил расталкивания, выравнивающих концентрацию. Но в соответствии с общими законами теплового движения возникнет диффузия микрочастиц из области с большей их концентрацией в область с меньшей, причем плотность диффузионного тока пропорциональна градиенту концентрации носителей заряда.

8. В области низких температур участок нижней ломаной между точками а и б характеризует только концентрацию носителей, обусловленную примесями. Наклон прямой на этом участке определяется энергией активации примесей. С увеличением температуры число носителей, поставляемых примесями, возрастает, пока не истощатся электронные ресурсы примесных атомов (точка б). На участке б – в примеси уже истощены, перехода электронов через запрещенную зону еще не обнаруживается. Участок кривой с постоянной концентрацией носителей заряда называют областью истощения примесей. В дальнейшем температура настолько велика, что начинается быстрый рост концентрации носителей вследствие перехода электронов через запрещенную зону ( участок в – и). Наклон этого участка характеризует ширину запрещенной зоны полупроводника. Угол наклона участка а – б зависит от концентрации примесей.

Вторая компонента, обуславливающая  электропроводность полупроводников – подвижность носителей заряда. При повышении температуры энергия электронов, а следовательно, и подвижность увеличивается. Но, начиная с некоторой температуры Т усиливаются колебания узлов кристаллической решетки полупроводника, которые мешают перемещению свободных носителей зарядов. Следовательно, их подвижность падает

9. Световая энергия, поглощаемая полупроводником, вызывает появление в нем избыточного (по сравнению с равновесным при данной температуре) количества носителей зарядов, приводящего к возрастанию электропроводности.

Фотопроводимостью называют увеличение электрической проводимости вещества под действием электромагнитного излучения.

Изменение электрических  свойств полупроводника под действием  электромагнитного излучения носит временный характер. После прекращения облучения проводимость более или менее быстро возвращается к тому значению, которое она имела до облучения. У одних полупроводников это длится микросекунды, у других измеряется минутами и, даже, часами. Знание инерционности фотопроводимости различных полупроводниковых веществ важно при разработке, например, фоторезисторов, к которым предъявляются высокие требования в отношении их быстродействия.

10. Электропроводность твердых кристаллических тел изменяется от деформации вследствие увеличения или уменьшения межатомных расстояний, приводящего к изменению концентрации и подвижности носителей зарядов. Подвижность носителей изменяется из-за изменения амплитуды колебания узлов кристаллической решетки при их сближении или удалении.

Величиной, численно характеризующей  изменение удельной проводимости полупроводников  при определенном виде деформации, является тензочувствительность, которая представляет собой отношение относительного изменения удельного сопротивления полупроводника к относительной деформации в данном направлении.

 

11. В сильных электрических полях нарушается пропорциональность между плотностью тока в полупроводнике и напряженностью внешнего электрического поля. Это является следствием физических процессов, вызывающих изменение удельной проводимости полупроводника. Напряженность поля, которую условно можно принять за границу между областью слабых 1 и сильных 2 полей, называют критической Екр. Эта граница не является резкой и определенной и зависит от природы полупроводника, концентрации примесей и температуры окружающей среды.  Возрастание проводимости обусловлено ростом числа носителей заряда, т.к. под влиянием поля они более легко освобождаются тепловым возбуждением. При дальнейшем росте поля может появиться механизм ударной ионизации, приводящий к разрушению структуры полупроводника.

12. Германий относится к числу сильно рассеянных элементов, т.е. часто встречающихся в природе, но присутствует в различных минералах в очень небольших количествах. Его содержание в земной коре составляет около 7·10-4 %, что примерно равно природным запасам таких распространенных металлов, как олово и свинец и существенно превышает количество серебра, кадмия, ртути, сурьмы и др. Тем не менее, получение германия в элементарном виде вызывает большие затруднения. В настоящее время основными источниками промышленного получения германия являются побочные продукты цинкового производства, коксования углей, а также германиевые концентраты, получаемые из медносвинцовоцинковых руд.

Чистый германий обладает металлическим блеском, характеризуется относительно высокой твердостью и хрупкостью, подобно кремнию, он кристаллизуется в структуру алмаза.

Кристаллический германий химически устойчив на воздухе при  комнатной температуре. При нагревании его до 650°С он окисляется с образованием двуокиси GeO2.

Германий обладает относительно невысокой температурой плавления - 936°С и ничтожно малым давлением  насыщенного пара при этой температуре. Ширина запрещенной зоны при изменении  температуры изменяется по линейному закону.

Оптические свойства германия позволяют использовать его  для изготовления фототранзисторов и фотодиодов, оптических линз с  большой светосилой, оптических фильтров, а также счетчиков ядерных  частиц. Рабочий диапазон германиевых  приборов от -60°С до +70°С.

13. В противоположность германию, кремний является одним из самых распространенных элементов в земной коре, где его содержится 29.5% по массе. По распространенности кремний занимает второе место после кислорода. Многочисленные соединения кремния входят в большинство горных пород и минералов. Песок и глина также представляют собой соединения кремния.

Кремний кристаллизуется  в структуру алмаза с несколько  меньшим, чем у германия периодом идентичности кристаллической решетки. Меньшие, чем у германия расстояния между атомами в решетке обуславливают более сильную ковалентную связь и, как следствие этого, более широкую запрещенную зону.

В химическом отношении  кремний является относительно инертным веществом. Он не растворим в воде, не реагирует со многими кислотами в любой концентрации. Растворяется в смеси азотной и плавиковой кислот и в кипящих щелочах. Кремний устойчив на воздухе при нагревании до 900°С. Выше этой Т° он начинает активно окисляться с образованием двуокиси кремния SiO2.

Кремний обладает сравнительно высокой температурой плавления и в расплавленном состоянии отличается высокой химической активностью.

Благодаря более широкой  запрещенной зоне, кремниевые приборы  могут работать при более высоких  температурах, чем германиевые. Верхний предел для них 180-200°С.

14. Соединения типа АIIIВV являются ближайшими электронными аналогами германия и кремния. Они образуются в результате соединения элементов III группы Периодической системы (бора, алюминия, галлия и индия) с элементами V группы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда.

Соединения АIIIВV принято классифицировать по металлоидному признаку. Соответственно различают нитриды, фосфиды, арсениды и антимониды.

Многообразие свойств полупроводников типа АIIIВV обуславливает их широкое применение в приборах и устройствах различного технического назначения. Особый интерес к этой группе материалов был вызван потребностями оптоэлектроники в быстродействующих источниках и приемниках излучения. Инжекционные лазеры и светодиоды на основе ПП АIIIВV характеризуются высокой эффективностью преобразования электрической энергии в электромагнитное излучение.

Большой набор значений ширины запрещенной зоны у этих полупроводников  позволяет создавать на их основе различные виды фотоприемников, перекрывающих широкий диапазон спектра. Среди них наибольшее распространение получили фотодиоды и фотоэлементы.

GaAs, InSb применяются для  изготовления туннельных диодов. По сравнению с германиевыми  диодами, приборы из арсенида галлия характеризуются более высокой рабочей температурой, а диоды из антимонида индия обладают лучшими частотными свойствами при низких температурах.

Прогресс в технологии арсенида галлия, достигнутый за последние  годы, открыл широкие перспективы применения этого материала для создания полевых транзисторов и быстродействующих интегральных схем. По сравнению с кремнием GaAs является более технологически сложным материалом. Однако совершенствование технологии различных процессов, разработка новых методов осаждения защитных слоев позволяют реализовать возможности GaAs в повышении степени интеграции и быстродействия ИМС.

15. Твердые растворы позволяют существенно расширить по сравнению с элементарными полупроводниками и ПП соединениями набор электрофизических параметров, определяющих возможности применения материалов в конкретных полупроводниковых приборах.

Особый интерес к  твердым растворам обусловлен возможностью плавного управления шириной запрещенной  зоны полупроводников путем изменения их компонентного состава.

Твердые растворы открывают  широкие возможности создания гетеропереходов  и приборов на их основе. Под гетеропереходом понимают контакт двух полупроводников с различной шириной запрещенной зоны. Решающим критерием при выборе материала контактной пары является соответствие периодов их кристаллических решеток и температурных коэффициентов их линейного расширения

16. Твердые растворы позволяют существенно расширить по сравнению с элементарными полупроводниками и ПП соединениями набор электрофизических параметров, определяющих возможности применения материалов в конкретных полупроводниковых приборах.

Особый интерес к  твердым растворам обусловлен возможностью плавного управления шириной запрещенной  зоны полупроводников путем изменения  их компонентного состава.

Твердые растворы открывают  широкие возможности создания гетеропереходов  и приборов на их основе. Под гетеропереходом понимают контакт двух полупроводников с различной шириной запрещенной зоны. Решающим критерием при выборе материала контактной пары является соответствие периодов их кристаллических решеток и температурных коэффициентов их линейного расширения.