Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экз / GISTOLOGIYa_OTVET_NA_VOPROS_ChAST_2.docx
Скачиваний:
120
Добавлен:
27.03.2017
Размер:
255.22 Кб
Скачать

175

Критические периоды развития человека. Роль факторов внешней среды.

В процессе онтогенеза существуют периоды повышенной чувствительности организма к повреждающему воздействию факторов внешней среды. Эти периоды получили название критических периодов развития. Впервые понятие критических периодов развития было сформулировано австралийским врачом Норманом Грегом в 1944 г. Значительный вклад в разработку положений теории критических периодов сделал российский эмбриолог П. Г. Светлов.

Почвой для возникновения критических периодов является переход организма зародыша от одного морфофункционального этапа к следующему, качественно отличного от предыдущего. Качественная перестройка организма при этом сопровождается пролиферацией, детерминации и дифференциацией клеток, что является его составляющими. Такими периодами повышенной чувствительности прогенезе является мейоз (стадия созревания половых клеток), а также процесс оплодотворения. В пренатальном онтогенезе до критических периодов относят имплантацию (6-8 сутки), плацентации и развитие осевых зачатков органов (3-8-я неделя), период усиленного развития головного мозга (15-20-я неделя), период формирования основных функциональных систем организма (20-24-я неделя), а также процесс родов. В постнатальном онтогенезе в критических периодов развития принадлежит период новорожденности (первый год жизни ребенка), период полового созревания (11-16 лет).

Повреждающее действие на организм, особенно в критические периоды его развития, могут осуществлять химические вещества (в том числе лекарственные средства), ионизирующее излучение (в том числе рентгеновское с диагностической целью), гипоксия, голодание, наркотические средства (в том числе никотин и алкоголь), вирусы, бактерии. Химические вещества, которые могут проходить через гемоплацентарний барьер, особенно опасны в первые месяцы беременности, поскольку они обладают способностью накапливаться в тканях и органах зародыша. В таком случае значительно возрастает вероятность их повреждающего действия.

174

Основные этапы эмбрионального развития человека.

Эмбриональное развитие человека принято делить на четыре стадии: 1) оплодотворение и образование зиготы; 2) дробление полное, но неравномерное асинхронное (меробластическое) оканчивается образованием морулы (стерробластулы). Периферические бластомеры (светлые) образуют трофобласт, внутренние (темные) - эмбриобласт. Из трофобласта формируется хорион. Из эмбриобласта образуется как внезародышевый, так и зародышевый материал. Стерробластула преобразуется в бластоцисту (бластодермический пузырек, заполненный жидкостью). Эмбриобласт смещается к анимальному полюсу, трансформируясь в зародышевый узелок; 3) гаструляция - первая фаза - деляминация (образование зародышевого диска и выделение материала для внезародышевых оболочек; вторая фаза - иммиграция (образование зародышевого щитка, выделение материала для тела зародыша); 4) образование зачатков, начало гистогенеза и раннего органогенеза.

173

Эмбриональное развитие человека: формирование плаценты, её строение и функции.

Плацента человека имеет гемохориальный тип строения. Этот тип плацен-тации характеризуется наличием непосредственного контакта материнской крови с хорионом вследствие нарушения целостности децидуальной оболочки матки со вскрытием ее сосудов. Возникновение гемохориальной плаценты в эволюции является высшей стадией. В ней отражены сложнейшие взаимоотношения функциональных систем матери и плода.

Основной частью плаценты являются ворсины хориона — производные трофобласта. На ранних этапах онтогенеза трофобласт образует протоплазма-тические выросты, состоящие из клеток цитотрофобласта (первичные ворсины). Первичные ворсины не имеют сосудов, и поступление питательных веществ и кислорода к организму зародыша из окружающей их материнской крови происходит по законам относительно простых законов осмоса и диффузии. К концу 2-й недели беременности в первичные ворсины врастает соединительная ткань, и образуются вторичные ворсины. Их основу составляет соединительная ткань, а наружный покров представлен эпителием (трофобласт). Эпителий вторичных ворсин состоит из двух слоев: слоя цитотрофобласта (слой Лангханса) и синцития (симпласта). Слой цитотрофобласта состоит из клеток округлой формы со светлой цитоплазмой. Ядра клеток крупные. В синцитии границы клеток практически неразличимы, цитоплазма темная, зернистая, со щеточной каймой. Ядра относительно небольших размеров, шаровидной или овальной формы.

С 3-й недели развития зародыша начинается очень важный процесс развития плаценты, который заключается в васкуляризации ворсин и превращении их в третичные, содержащие сосуды. Формирование сосудов плаценты происходит как из ангиобластов зародыша, так и из пупочных сосудов, растущих из аллантоиса. Сосуды аллантоиса врастают во вторичные ворсины, в результате чего каждая вторичная ворсина получает васкуляризацию. Так осуществляется важнейший процесс внутриутробного развития — васкуляризация хориона. Установление аллантоидного кровообращения обеспечивает интенсивный обмен между организмами плода и матери.

На ранних стадиях внутриутробного развития ворсины хориона равномерно покрывают всю поверхность плодного яйца. Однако начиная со 2-го месяца онтогенеза на большей поверхности плодного яйца ворсины атрофируются, в то же время пышно развиваются ворсины, обращенные базальной части децидуальной оболочки. Так формируются гладкий и ветвистый хорион. Дальнейшее развитие и дифференцировка хориона характеризуются следующими основными моментами. При сроке беременности 5—6 нед толщина синцитиотрофобласта превосходит толщину слоя Лангханса, а, начиная со срока 9—10 нед синцитиотрофобласт постепенно истончается и количество ядер в нем увеличивается. На свободной поверхности синцитиотрофобласта, обращенной к межворсинчатому пространству, становятся хорошо заметными длинные тонкие цитоплазматические выросты (микроворсины) которые значительно увеличивают резорбционную поверхность плаценты В начале II триместра беременности происходит интенсивное превращение цитотрофобласта в синцитий, в результате чего на многих участках слой Лангханса полностью исчезает.

Функции плаценты:

1) обмен между организмами матери и плода газами-метаболитами, электролитами. Обмен осуществляется при помощи пассивного транспорта, облегченной диффузии и активного транспорта. Достаточно свободно в организм плода из материнского могут проходить стероидные гормоны;

2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована. Продолжительность пассивного иммунитета после рождения составляет 6 – 8 месяцев;

3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;

4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;

5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.

172

Эмбриональное развитие человека: образование и характеристика внезародышевых органов.

В процессе эмбриогенеза человека формируются следующие внезародышевые органы: амнион, желточный мешок, аллантоис, хорион и плацента. В их образовании участвуют все три зародышевых листка, а также ткани материнского организма (материнская часть плаценты). Имплантация зародыша активизирует пролиферативные и миграционные процессы в эмбриобласте. Это приводит к развитию внезародышевых органов — амниона, желточного мешка, аллантоиса и хориона (в период с 7-х по 14-е сутки эмбриогенеза).

Амнион (водная, амниотическая оболочка), представляет собой полый орган (мешок), заполненный жидкостью (околоплодными водами), в которой находится и развивается зародыш. Основная функция амниона — выработка околоплодных вод, которые обеспечивают оптимальную среду для развития зародыша и предохраняют его от высыхания и механических воздействий. Амнион возникает из материала эпибласта путем образования в его толще полости — амниотического пузырька. В процессе развития эпителий амниона (сначала однослойный плоский) на 3-м месяце эмбриогенеза преобразуется в призматический. Располагается эпителий на базальной мембране, под которой находится более плотный слой соединительной ткани. Далее располагается губчатый слой рыхлой волокнистой соединительной ткани, пространственно связанный со стромой гладкого и ворсинчатого хориона. Эпителиоциты амниона обладают секреторной (в плацентарной части) и всасывающей (во внеплацентарной части) активностью. Амниотическая жидкость постоянно обменивается, имеет сложный химический состав, изменяющийся в ходе развития плода. Помимо указанных выше функций, амниотическая жидкость имеет важное значение для формообразовательных процессов — развития ротовой и носовой полостей, органов дыхания, пищеварения..

Желточный мешок у человека (пупочный, или пуповинный пузырек) — рудиментарное образование, утратившее функцию вместилища питательных веществ. До 7-8-й недели эмбриогенеза основная его функция — кроветворная. Кроме того, в стенке желточного мешка появляются первичные половые клетки — гонобласты, которые мигрируют в него из области первичной полоски. Источниками развития тканей желточного мешка являются внезародышевая энтодерма и внезародышевая мезенхима. Стенка желточного мешка выстлана желточным эпителием — особым подтипом эпителия кишечного типа. Эпителий состоит из одного слоя кубических или плоских клеток энтодермального происхождения со светлой цитоплазмой и круглыми интенсивно красящимися ядрами. После формирования туловищной складки желточный мешок связывается с полостью средней кишки посредством желточного стебелька. Позднее желточный мешок обнаруживается в составе пупочного канатика в виде узкой трубочки.

В середине 1-го месяца внутриутробного развития за счет пролиферации эпителия каудального участка желточного пузырька возникает аллантоис. Аллантоис врастает в амниотическую ножку. Стенка аллантоиса состоит из однослойного призматического эпителия, клетки которого имеют умеренно выраженную оксифилию цитоплазмы. Не являясь мочевым мешком (как это было у яйцекладущих), аллантоис со своими сосудами, которые связываются с ворсинками хориона, обеспечивает питание развивающегося зародыша.

171

Эмбриональное развитие человека: дробление, имплантация, способы гаструляции.

 Период дробления. Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются в центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.

Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине. Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК. Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина. На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой. Развитая бластоциста состоит из следующих структурных образований:1) эмбриобласты; 2) трофобласты; 3) бластоцели, заполненной жидкостью. Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.

Имплантация (нидация) начинается на 6-7-е сутки с адгезии - прилипания бластоцисты анимальным полюсом к эндометрию - и совпадает с 1-й фазой гаструляции - деляминацией с образованием зародышевого диска, состоящего из эпибласта (материал эктодермы, мезодермы, хорды) и гипобласта (внезародышевая энтодерма, обращенная в полость бластоцисты. На 11-12-е сутки трофобласт разрастается, образуя первичные ворсины хориона, дифференцируется на симпластотрофобласт и цитотрофобласт. К этому времени из внезародышевой эктодермы закладывается амниотический пузырек, из внезародышевой энтодермы - желточный пузырек. Хорион образуется из первичных ворсин после прорастания внезародышевой мезодермы с образованием вторичных ворсин хориона и врастания в них кровеносных сосудов из желточного пузырька. Образование зародышевого материала происходит на 14-15-е сутки во 2-й фазе гаструляции путем иммиграции. Клетки из эпибласта иммигрируют в щель между соприкасающимися стенками амниотического пузырька и желточного пузырька, входящими в состав зародышевого щитка. Вторая фаза гаструляции приводит к образованию 3 зародышевых листков, нервной трубки и хорды. В это время формируется еще один провизорный орган - аллантоис - и питание зародыша осуществляется через аллантохорион.

Гаструляция у человека подразделяется на две фазы. Первая фаза гаструляции протекает на 7 – 8-е сутки (в процессе имплантации) и осуществляется способом деламинации (формируется эпибласт, гипобласт). Вторая фаза гаструляции происходит с 14-х на 17-е сутки. В период между I и II фазами гаструляции, т. е. с 9-х по 14-е сутки формируются внезародышевая мезенхима и три внезародышевых органа – хорион, амнион, желточный мешок. Формирование тела зародыша и обособление от внезародышевых органов происходит в результате образования туловищной складки, продолжается с 15-го по 20-й день и называется пресомитным периодом. Сомитный период продолжается с 21-го по 35-й день и сопровождается сегментацией мезодермы на 43-44 сегмента (сомита). В это время завершается обособление тела зародыша, образуются нервные валики.

170

Эмбриональное развитие человека: характеристика половых клеток и оплодотворение

В результате гаметогенеза образуются половые мужские и женские клетки, которые отличаются от соматических клеток по следующим признакам: 1. Набор хромосом: соматические клетки имеют диплоидный, половые клетки – гаплоидный набор хромосом. 2. Половые клетки имеют специальные приспособления для выполнения своих специфических функций: а) сперматозоиды – акрасому (видоизмененный пластинчатый комплекс) для проникновения через оболочки яйцеклетки и двигательный аппарат (хвостик, центриоли и митохондрии); б) яйцеклетки – I и II оболочки, желток (трофические включения). 3. Ядерно-цитоплазматическое отношение половых клеток резко отличается от соматических: в яйцеклетке – очень низкое (резко преобладает масса цитоплазмы), в сперматазоидах – очень высокое (преобладает масса ядра). 4. Жизненный цикл у половых сложный и многостадийный. 5. Биологическое назначение: из соматических клеток могут образоваться только подобные клетки, а из половых клеток – целый новый организм.

Яйцеклетка человека имеет диаметр около 130 мкм, окружена первичной (оолеммa или собственная оболочка) и вторичной (блестящая или прозрачная зона) оболочками и слоем фолликулярных клеток. Блестящая зона состоит из гликопротеинов Zр1, Zр2 и ZрЗ (является специфическим рецептором для сперматозоидов) и гликозаминогликанов. Ядро содержит гаплоидный набор хромосом и хорошо выраженное ядрышко. В цитоплазме имеются гранулярный ЭПС, комплекс Гольджи, умеренное количество митохондрий, гранулы желтка (трофические включения), сразу под цитолеммой — кортикальные гранулы (гранулы диаметром около 1мкм. окружены элементарной мембраной, содержат ферменты для кортикальной реакции). В яйцеклетки человека желтка мало, желток распределяется по цитоплазме равномерно, т.е. яйцеклетка олиголецнтальная и изолецитальная.

Оплодотворение — это сближение и слияние половых клеток с образованием одноклеточного зародыша — зиготы. У человека оплодотворение внутреннее, т.е. происходит и женских половых путях. В процессе оплодотворения выделяют: 1. Дистантное взаимодействие и сближение половых клеток. 2. Контактное взаимодействие половых клеток и активизация яйцеклетки. 3. Вхождение сперматазоида в в яйцеклетку и последующей синкарион (сингамия)- слияние женского и мужского пронуклеусов.

Дистантное взаимодействие (взаимодействие на расстоянии) половых клеток начинается с момента попадания сперматозоидов в женские половые пути, т.е. когда сперматозоиды находятся еще во влагалище: женские половые клетки выделяют специфические вещества — гемогормоны, которые вызывают хемотаксис сперматозоидов — свойство сперматозоидов двигаться против градиента концентрации (туда, где выше концентрация) гемогормонов хемотаксис сперматозоидов обуславливает их направленное движение к яйцеклетке. Продвижению сперматозоидов к яйцеклетке способствует также реотаксис сперматозоидов — свойство сперматозоидов всегда двигаться против тока жидкости (слизь в женских половых путях течет по направлению: маточные трубы —> матка —> влагалище). Сперматозоиды двигаются со скоростью 30-50 мкм/сек. Поэтому уже через 30-60 минуг могут попадать в полость матки, а через 1,5-2 часа — ампулярной части маточной трубы. Сразу после эякуляции и в ближайшие часы сперматозоиды еще не способны оплодотворить яйцеклетку, для этого должна произойти капацнтация сперматозоида -приобретение способности к оплодотворению под воздействием секретов женских половых путей. Для капацитации сперматозоидов в среднем требуется 7 часов.

Контактное взаимодействие половых клеток и проникновение сперматозоида в яйцеклетку Многочисленные сперматозоиды окружают яйцеклетку и выделяют ферменты, под воздействием которых от яйцеклетки отсоединяются фолликулярные клетки. Сперматозоиды синхронным биением жгутиков вращают яйцеклетку со скоростью 4 оборота в минуту (в течении до 12 часов !). При помощи специфических (строго комплементарных для каждого вида) рецепторов сперматозоид (фермент гликозилтрансфераза на поверхности акросомы) и яйцеклетка (сахар N-ацетилглюкозамин в составе ZрЗ фракции гликопротеинов блестящей зоны) «узнают» друг друга — т.е. происходит контакт, в результате у сперматозоида просходит акрасомальная реакция — выделение и воздействие на оболочки яйцеклетки ферментов акросомы (гиалуронидаза и трипсин) и головка сперматозоида проникает через блестящую зону и оолемму и цитоплазму яйцеклетки. У человека и яйцеклетку проникает только один сперматозоид — моноспермия. Проникновению других сперматозоидов (полиспермия) препятствует наступающая через» несколько секунд кортикальная реакция — мембраны кортикальных гранул яйцеклетки сливаются с оолеммой и содержимое гранул воздействует на блестящшую зону (И оболочку яйцеклетки); в результате этого блестящая оболочка утрачивает способность осуществлять специфический контакт со сперматозоидами и запускать у них акрасомальную реакцию, уплотняется и превращается в оболочку оплодотворения, непроницаемую для остальных сперматозоидов.

Синкарион. После проникновения в яйцеклетку ядро сперматозоида увеличивается в размерах, хроматин десперализуется. Далее ядра яйцеклетки и сперматозоида (пронуклеусы) сближаются и сливаются (синкарион), а из клеточного цетра сперматозоида начинает формироваться веретено деления — в результате образуется зигота, т.е. одноклеточный зародыш. В зиготе начинается интенсивный синтез белка. — яйцеклетка активизируется, начинает готовится к следующей стадии эмбриогенезе — дроблению. Для активизации яйцеклетки проникновение в нее сперматозоида необязательно, достаточно кратковременного контакта между поверхностью яйцеклетки и сперматозоида.

169

Молочная железа. Развитие и строение.

Молочные железы по своему происхождению представляют видоизмененные кожные потовые железы.

Развитие

Молочные железы закладываются у зародыша на 6—7-й неделе в виде двух уплотнений эпидермиса (т.н. «молочные линии»), тянущихся вдоль туловища. Из этих утолщений формируются так называемые «молочные точки», из которых в подлежащую мезенхиму врастают плотные эпителиальные тяжи. Затем они разветвляются на своих дистальных концах, формируют зачатки молочных желез.

Несмотря на неполное развитие желез, у новорожденных (и мальчиков, и девочек) уже обнаруживается секреторная деятельность, которая продолжается обычно в течение недели и затем прекращается. У девочек молочные железы до наступления половой зрелости находятся в покоящемся состоянии. В течение детского возраста у обоих полов происходит разрастание разветвлений молочных ходов.

С наступлением половой зрелости возникают резкие половые различия в темпах развития молочных желез. У мальчиков образование новых ходов замедляется и затем прекращается. У девочек развитие железистых трубок значительно ускоряется и к началу менструаций на молочных ходах появляются первые концевые отделы. Однако молочная железа достигает окончательного развития только при беременности в период лактации.

Строение.

У половозрелой женщины каждая молочная железа состоит из 15—20 отдельных железок, разделенных прослойками рыхлой соединительной и жировой ткани. Эти железы по своему строению являются сложными альвеолярными, и их выводные протоки открываются на вершине соска. Выводные протоки переходят в расширенные молочные синусы, служащие резервуарами, в которых накапливается молоко, продуцируемое в альвеолах. Молочные синусы впадают многочисленные ветвящиеся и анастомозирующие молочные протоки, заканчивающиеся до наступления периода лактации тонкими слепыми трубочками — альвеолярными молочными ходами. Они во время беременности и лактации дают начало многочисленным альвеолам. Молочные синусы открываются на верхушке соска, представляющего собой утолщение кожи. Его эпидермис сильно пигментирован, в базальную часть эпителиального слоя вдаются длинные и часто разветвляющиеся сосочки дермы. Полного развития молочная железа достигает во время беременности. С момента имплантации зародыша в дольках молочной железы разрастаются альвеолярные ходы, на концах которых формируются альвеолы. Во второй половине беременности железистые клетки начинают вырабатывать секрет и незадолго до родов наступает секреция молозива (colostrum).

Выработка молока происходит в альвеолах, имеющих вид округлых или слегка вытянутых пузырьков. Железистые клетки альвеол – лактоциты – соединяются с помощью замыкающих пластинок и десмосом, располагаются в один слой на базальной мембране. На апикальной поверхности лактоцитов выступают небольшие микроворсинки. Местами у основания лактоцитов (как и в других эктодермальных железах, например в потовых или слюнных) обнаруживаются миоэпителиальные клетки, охватывающие своими отростками альвеолу снаружи. Молоко — сложная водная эмульсия, в состав которой входят жировые капельки (триглицериды молока, а также жирные кислоты, являющиеся предшественниками триглицеридов), белки (из них специфическими для молока являются казеин, а также лактоглобулины и лактоальбумины), углеводы (в том числе специфический для молока дисахарид — лактоза, или молочный сахар), соли и вода. При выделении синтезированных компонентов молока жировые капли, достигающие больших размеров, перемещаются к апикальной мембране и, облекаясь ею, вытягиваются над краем лактоцита. По мере экструзии жировая капля вместе с окружающей ее частью апикальной мембраны отрывается и попадает в полость альвеолы. В полости альвеолы капельки жира, раздробляясь, превращаются в тонкую эмульсию, к которой примешиваются казеин, лактоза и соль, т.е. формируется молоко, которым заполняется полость альвеолы. Опорожнению альвеолы и переходу молока в млечные ходы способствует сокращение миоэпителиальных клеток.По окончании периода лактации молочная железа претерпевает инволюцию, однако часть альвеол, образовавшихся во время предыдущей беременности, сохраняется.

168

Овариально-менструальный цикл и его гормональная регуляция.

Половой (менструальный) цикл характеризуется тремя периодами: менструальным (фаза десквамации эндометрия), постменструальным периодом (фаза пролиферации эндометрия) и предменструальным периодом (фаза секреции). Менструальный цикл регулируется гормонами яичников. В день менструации овариальные гормоны практически отсутствуют в организме женщины.

Характеристика стадий овариально-менструального цикла:

1) Стадия десквамации - некроз и отторжение функционального слоя, которое вызвано резким снижением прогестерона в крови и ишемией спиралевидных артерий вследствие гибели яйцеклетки либо зародыша на самой ранней стадии развития. Кровотечение длится 2-3 дня. Некроз происходит в ограниченных участках и последовательно. Этот период называтся периодом «гормонального междуцарствия».

2) Стадия пролиферации - из клеток базального слоя слизистой матки восстанавливается функциональный слой. Период длится 11-12 дней и завершается овуляцией. Пролиферация регулируется эстрогенами под илиянием ФСГ.

3) Секреторная стадия - длится 13-14 дней. Она совпадает по сро-n.iM с жизнью менструального желтого тела. Функциональный слой утолщается и разделяется на две зоны: компактную и спонгиозную. Кровеносные сосуды спирализуются. Железы начинают вырабатывать слизистый секрет, становятся складчатыми (пилообразными). В спонгиозной зоне функционального слоя появляются децидуальные клетки, богатые гликогеном и липидами. Этот трофический материал необходим для самых ранних стадий развития зародыша.

167

Происхождение и строение маточных труб, матки и влагалища

Маточные трубы, матка, влагалище развиваются из общего источника -мюллеровых труб - и поэтому имеют общий план строения. Их стенка образована тремя оболочками - слизистой, мышечной и серозной оболочкой, или адвентицией. Эти органы формируют родовые пути женщины.

Маточные трубы, или яйцеводы - парные органы, соединяющие брюшную полость и матку. По ним половые клетки проходят в матку. Проксимальный конец яйцевода имеет форму воронки, которая в момент овуляции плотно охватывает яичник. Продвижение половой клетки по маточной трубе обеспечивается как движением ресничек эпителиальных клеток, выстилающих полость маточной трубы, так и перистальтическими сокращениями ее мышечной оболочки. Слизистая оболочка формирует многочисленные продольные складки и состоит из двух слоев - эпителиального и собственной пластинки. В рыхлой соединительной ткани собственной пластинки присутствуют децидуальные клетки. Мышечная оболочка состоит из внутреннего циркулярного и наружного продольного слоев. Серозная - традиционно включает рыхлую соединительную ткань и мезотелий.

Матка - мышечный орган, схожа с маточными трубами по строению, но ее оболочки имеют органоспецифические названия: эндометрий, миометрий и периметрии. Эндометрий (слизистая оболочка) включает два слоя - базальный и функциональный. Строение функционального (поверхностного) слоя зависит от овариальных гормонов и меняется на протяжении менструального цикла. Поверхность эндометрия выстлана однослойным призматическим эпителием, представленным реснитчаты-

ми и секреторными клетками. Эпителий формирует вдавления - маточные ямки (крипты) или маточные железы во время секреторной фазы. Собственная пластинка, образованная рыхлой соединительной тканью, содержит децидуальные клетки, заполненные гликогеном и липопротеиновыми включениями. Количество децидуальных клеток возрастает (со времени менструации), особенно при формировании плаценты в период беременности. Миометрий (мышечная оболочка) состоит из трех слоев: внутреннего - подслизистого, среднего - сосудистого и наружного - надсосудистого. Периметрий - серозная оболочка (брюшина).

Влагалище в составе стенки содержит три оболочки: слизистую, мышечную и адвентициальную. Многослойный эпителий слизистой оболочки влагалища претерпевает ритмические (циклические) изменения в последовательных фазах менструального цикла.

166

Циклические изменения в яичнике: атретическое тело, желтое тело, этапы развития, гормоны, их значение

В соединительнотканной строме коркового вещества располагаются фолликулы различной степени зрелости: примордиальные, первичные, шоричные, третичные (Граафов пузырек) фолликулы, желтые, белые и атретические тела. Фолликулярные клетки превращаются в лютейновые, формирующие временный эндокринный орган - желтое тело.

В своем развитии желтое тело проходит 4 стадии. 1) Стадия пролиферации и васкуляризации - происходит размножение фолликулярных клеток и врастание капилляров из сосудистой теки. 2) Стадия железистого метаморфоза. Фолликулярные клетки превращаются в крупные полигональные железистые (лютеиновые) клетки. В них накапливается пигмент лютеин и холестериновые включения. 3) Стадия расцвета. Лютеиновые клетки начинают продуцировать основной гормон - прогестерон, а также эстрогены, андрогены, окситоцин и простагландины. Продолжительность этой стадии различна. Если оплодотворения не произошло, период расцвета желтого тела ограничивается 12-14 днями. В этом случае оно называется менструальным желтым телом. Более длительно желтое тело сохраняется, если наступила беременность - желтое тело беременности. 4) Стадия регресса. Лютеиновые клетки атрофируются, их эндокринная функция прекращается. Желтое тело прорастает соединительной тканью и превращается в белое тело. Оно может сохраняться в яичнике на протяжении несколько лет.

Между фолликулами встречаются атретические тела. Они формируются из прекративших свое развитие на разных стадиях фолликулов. Атрезия овоцитов начинается с гибели фолликулярных клеток, а затем и овоцита. Дольше всех сохраняется оксифильная блестящая оболочка, по которой можно идентифицировать атретические тела на микропрепаратах. Одновременно разрастаются интерстициальные клетки сосудистой теки. Они гипертрофируются и становятся похожи на лютеиновые клетки. Эти клетки синтезируют андрогены. В ходе дальнейшей инволюции атретических тел на их месте остаются скопления интерстициальных клеток.

165

Циклические изменения в яичнике: формирование вторичных- граафовых фолликулов, их строение и гормоны.

Дальнейший рост фолликула обусловлен разрастанием фолликулярного эпителия и превращением его в многослойный, секретирующий фолликулярную жидкость, которая накапливается в формирующейся полости фолликула и содержит стероидные гормоны (эстрогены). Такие фолликулы называются вторичными. При этом овоцит 1-го порядка с окружающими его вторичной оболочкой и фолликулярными клетками в виде яйценосного бугорка смещается к одному полюсу фолликула. Такой фолликул называется третичным, или Граафовым пузырьком. Его стенку образует многослойный фолликулярный эпителий - гранулезный слой, лежащий на базальной мембране. Фолликулярные клетки, непосредственно окружающие овоцит, при помощи отростков тесно взаимодействуют с его цитолеммой и называются лучистым венцом. Дальнейшее увеличение объема пузырька, переполненного фолликулярной жидкостью, приводит к растягиванию и истончению его собственной наружной оболочки и белочной оболочки самого яичника в месте прилегания этого пузырька. Как следствие этого, происходит овуляция - разрыв Граафова пузырька и выход овоцита в брюшную полость. На месте лопнувшего Граафова пузырька остается зернистый слой фолликулярных клеток и тека фолликула, а в полость изливается кровь. Эта структура быстро организуется - прорастает соединительной тканью.

164

Развитие яичника и происхождение первичных половых клеток.

Яичники. В их развитии выделяют следующие стадии: 1) стадия индифферентной железы, 2) стадия эпителиальных шаров, 3) стадия яйценосных мешков; 4) стадия примордиальных фолликулов, 5) стадия зрелой половой железы.

Яичники развиваются из индифферентной половой железы - утолщения целомического эпителия на поверхности мезонефроса. В этот эпителий на ранних стадиях эмбриогенеза из энтодермы желточного мешка мигрируют гонобласты. Эпителий медиальной поверхности мезонефроса утолщается и вместе с гонобластами мигрирует в подлежащую мезенхиму, формируя половые тяжи огромных размеров. В дальнейшем эпителий тяжей разделяется прорастающей мезенхимой, в результате чего образуются скопления эпителиальных клеток в виде шаров, в центре которых находятся гонобласты. Такие скопления называются эпителиальными шарами. На 3-м месяце эмбриогенеза гонобласты, находящиеся в эпителиальных шарах, интенсивно делятся и превращаются в овогонии; в итоге стенки эпителиальных шаров растягиваются, они заполняются первичными и вторичными овогониями и превращаются в яйценосные мешки. С конца 3-го месяца до момента рождения из вторичных овогониев образуются овоциты 1-го порядка на стадии малого роста (вступают в профазу мейоза и остаются в ней длительное время, до полового созревания), а яйценосные мешки распадаются на примордиальные фолликулы. Таким образом, развивающиеся половые клетки (гонобласты, овогонии, овоциты) тесно взаимодействуют с окружающими их эпителиальными клетками, которые получили название фолликулярных клеток. Совокупность фолликулярных клеток с половой клеткой называется фолликулом. Фолликулы формируют корковое вещество. По степени зрелости они делятся на примордиальные и первичные (в зрелом яичнике также вторичные и третичные).

Половые клетки являются потомками эмбриональных тотипотентных клеток, присутствующих в бластодерме зародыша в период формирования первичной полоски. Затем они попадают в заднюю внезародышевую энтодерму, мигрируют в стенку кишки и в окружающую ее мезенхиму, а затем перемещаются в дорзальный мезентерий к закладке гонады. Гоноциты ранних зародышей, поврежденные рентгеновскими лучами, не восстанавливаются. Итак, первичные половые клетки — гоноциты появляются раньше половой железы и существуют независимо от нее. До развития гонады они активно перемещаются в организме с токами жидкостей. Перед миграцией половые клетки несколько раз делятся, но, начав миграцию, делиться перестают. Оказавшись вблизи половой железы, гоноциты приближаются к ней амебоидным способом, привлекаемые фактором белковой природы, который выделяет гонада. Проникнув в железу, половые клетки располагаются у самцов в мозговом, а у самок в корковом слое гонады. В дальнейшем половые клетки до их созревания находятся в гонадах — семенниках и яичниках. Развитие половых клеток называют предзародышевым развитием или гаметогенезом.

163

Предстательная железа

Предстательная железа - мышечно-железистый орган, охватывающий верхнюю часть мочеиспускательного канала (уретры), в которую открываются протоки многочисленных простатических желез. Это дольчатая железа, покрытая тонкой соединительнотканной капсулой. Ее паренхима состоит из 30-50 отдельных слизистых желез, выводные протоки которых открываются в мочеиспускательный канал. Железы располагаются вокруг мочеиспускательного канала тремя группами: центральная, периферическая и переходная.

Периферическая группа желез занимает большую часть органа и состоит из собственно предстательных желез. Концевые отделы альвеоляр-но-трубчатыхжелез образованы высокими слизистыми экзокриноцитами, между основаниями которых располагаются мелкие вставочные клетки. Выводные протоки перед впадением в уретру расширяются в виде ампул, выстланных многорядным призматическим эпителием. Мышечно-элас-тическую строму железы образуют рыхлая волокнистая соединительная ткань и мощные пучки гладких мышечных клеток, радиально расходящиеся от центра предстательной железы и разделяющие ее на дольки. Каждая долька и каждая железа окружены продольными и циркулярными слоями гладких мышечных клеток, которые, сокращаясь, выбрасывают секрет из предстательных желез. Функции предстательной железы многообразны. Вырабатываемый простатой секрет, выбрасываемый во время эякуляции, содержит простагландины, иммуноглобулины, ферменты, витамины, лимонную кислоту, ионы цинка и др. Секрет участвует в разжижении эякулята, поддерживает движение и жизнедеятельность сперматозоидов, повышая их устойчивость к различным неблагоприятным условиям.

162

Строение семенника. Генеративная и эндокринная функция семенников. Роль тестикулярного барьера в защите половых клеток

Семенник - парный орган, снаружи покрыт белочной оболочкой, от которой в глубь семенника отходят перегородки - септы - и делят его на 200-300 долек. На заднем крае яичка белочная оболочка утолщается, формируя средостение. В каждой дольке располагаются 1-4 извитых семенных канальца длиной от 30 до 80 см. Приближаясь к средостению, канальцы (300-450 в каждом семеннике) сливаются и становятся прямыми, а в толще средостения соединяются с канальцами сети семенника. Из этой сети выходит 10-12 выносящих канальцев, впадающих в проток придатка.

В соединительной ткани между семенными канальцами расположены гемо- и лимфокапилляры, обеспечивающие обмен веществ между кровью и сперматогенным эпителием. Избирательность поступления веществ из крови в сперматогенный эпителий обеспечивается гематотестикулярным барьером. В состав ГТБ входят: система плотных контактов между клетками Сертоли, базальная мембрана извитого семенного канальца, миоид-ные клетки, расположенные вокруг извитых канальцев, интерстициальная соединительная ткань, базальная мембрана и эндотелий гемокапилляров.

Стенку семенного канальца образует собственная оболочка, состоящая из базального, миоидного и волокнистого слоев. На базальной мембране располагается однослойный эпителий, представленный клетками Сертоли и спертматогенными клетками, находящимися на различных стадиях дифференцировки (стволовые клетки, сперматогонии, сперматоциты, сперматиды и сперматозоиды).

Клетки Сертоли имеют пирамидальную форму, широким основанием прикреплены к базальной мембране. Апикальные части образуют множество анастомозирующих друг с другом отростков, между которыми, как в карманах, располагаются развивающиеся половые клетки. Пространства между базальными частями называются базальным отсеком канальца и заняты сперматогониями разных типов - здесь происходит процесс их размножения.

Между соседними поддерживающими клетками формируются зоны плотных контактов, которые подразделяют сперматогенный эпителий на два отдела - наружный базальный и внутренний адлюминальный. В базальном отделе расположены сперматогонии, имеющие максимальный доступ к питательным веществам, поступающим из кровеносных капилляров. В адлюминальном отделе находятся сперматоциты на стадии мейоза, а также сперматиды и сперматозоиды, которые не имеют доступа к тканевой жидкости и получают питательные вещества непосредственно от поддерживающих эпителиоцитов. Поддерживающие эпителиоциты создают микросреду, необходимую для дифференцирующихся половых клеток. Кроме того, они синтезируют андроген связывающий белок (АСБ), который транспортирует мужской половой гормон к сперматидам.

В извитом семенном канальце сперматогенез протекает неравномерно, волнами, поэтому на препаратах на одном срезе канальца не всегда можно наблюдать все стадии развития половых клеток, цикл развития которых продолжается в среднем 74 суток.

В рыхлой соединительной ткани между петлями извитых канальцев (вокруг кровеносных капиляров) располагаются интерстициальные клетки Лейдига. Они округлой или многоугольной формы диаметром 10-15 мкм, с оксифильной цитоплазмой, хорошо развитой гладкой эндо-плазматической сетью, многочисленными митохондриями с трубчатыми кристами. Клетки Лейдига вырабатывают мужские половые гормоны - тестостерон, дигидротестстерон, андростендион и небольшое количество эстрогенов. Помимо половых гормонов, клетки Лейдига вырабатывают небольшое количество окситоцина, стимулирующего сокращение перитубулярных миоидных клеток извитых семенных канальцев, интерлейкин-1, действующий как фактор роста на сперматогонии типа В.

161

Ранний органогенез. Зародышевые листки и их производные.

Производные зародышевых листков. Эктодерма - эпителий кожного покрова и его производные (волосы, железы, ногти). Нервная трубка - из краниальной части: головной мозг и органы чувств; из туловищного отдела: спинной мозг. Ганглионарные валики - периферические отделы нервной системы (спинальные и вегетативные узлы и хромаффинная ткань). Зачаток хорды - хордовая струна. Сомиты дорсальной мезодермы: из дерматома развивается дерма кожи; из миотома - поперечно-полосатая мышечная ткань; из склеротома - осевой скелет. Из вентральной мезодермы (листки спланхнотомов) образуется эпителий серозных оболочек (мезотелий). Сегментарные ножки служат источником образования эпителия органов половой и выделительной системы. Из кишечной энтодермы образуется эпителий органов ЖКТ, дыхания и бранхиогенной группы желез.

Органогенез (развитие, образование)— процесс развития, или формирования, органов у зародыша человека и животных. Органогенез следует за более ранними периодами зародышевого развития— дроблением яйца, гаструляцией и наступает после того, как обособятся основные зачатки (закладки) органов и тканей. Органогенез протекает параллельно с гистогенезом (см.), или развитием тканей. В отличие от тканей, из которых каждая имеет своим источником какой-либо один из эмбриональных зачатков, органы, как правило, возникают при участии нескольких (от двух до четырех) различных зачатков, дающих начало разным тканевым компонентам органа. Например, в составе стенки кишки эпителий, выстилающий полость органа, и железы развиваются из внутреннего зародышевого листка — энтодермы (см.), соединительная ткань с сосудами и гладкая мышечная ткань — из мезенхимы (см.), мезотелий, покрывающий серозную оболочку кишки,— из висцерального листка спланхнотома, т. е. среднего зародышевого листка — мезодермы, а нервы и ганглии органа — из неврального зачатка. Кожа образуется при участии наружного зародышевого листка — эктодермы (см.), из которой развиваются эпидермис и его производные (волосы, сальные и потовые железы, ногти и др.), и дерматомов, из которых возникает мезенхима, дифференцирующаяся в соединительнотканную основу кожи (дерму). Нервы и нервные окончания в коже, как и всюду,— производные неврального зачатка. Некоторые органы формируются из одного зачатка, например кость, кровеносные сосуды, лимфатические узлы — из мезенхимы; однако и здесь в закладку врастают производные зачатка нервной системы — нервные волокна, формируются нервные окончания. Основными процессами, лежащими в основе органогенеза, являются образование зародышевыми листками складок, впячиваний, выпячиваний, утолщений, неравномерный рост, срастание или разделение (обособление), а также взаимное прорастание различных закладок. У человека органогенез начинается с конца 3-й недели и завершается в основных чертах к 4-му месяцу внутриутробного развития. Однако развитие ряда провизорных (временных) органов зародыша — хориона, амниона, желточного мешка — начинается уже с конца 1-й недели, а некоторые дефинитивные (окончательные) органы формируются позже других (например, лимфатические узлы— начиная с последних месяцев внутриутробного развития и до наступления полового созревания). 

160

Бластула и гаструла, способы гаструляции у человека.

Дробление — это последовательное деление зиготы без роста образующихся клеток — бластомеров. Дробление у человека полное, неравномерное, асинхронное. После первого деления дробления образуются 2 бластомера. Из крупного бластомера развивается зародыш и почти все провизорные органы (соединительная ткань хориона и плодной части плаценты, амнион, желточный мешок, аллантоис). Из мелкого бластомера развивается трофобласт. В процессе дробления мелкие клетки делятся быстрее крупных. В результате этого мелкие клетки обрастают снаружи крупные. Поэтому образующаяся клеточная масса — морула состоит из двух групп клеток. Внутри находятся крупные клетки. Их совокупность называется эмбриобластом. Снаружи располагаются мелкие клетки, называемые трофобластом.

ОБРАЗОВАНИЕ БЛАСТУЛЫ. В процессе деления клеток трофобласта и эмбриобласта объем морулы увеличивается, а клетки зародыша начинают секретировать жидкость, которая накапливается внутри под трофобластом. Со временем количество жидкости увеличивается, и внутри зародыша образуется полость, заполненная этой жидкостью, а клетки эмбриобласта оттесняются к периферии и прилипают к трофобласту. Это и есть бластула. Такая бластула называется бластоцистой. Она состоит из: 1) трофобласта, образующего как бы стенку бластулы; 2) клеток эмбриобласта, располагающихся внутри; 3) полости бластулы, заполненной жидкостью.

Поверхность бластоцисты неровная, так как трофобласт образует выросты. Эти выросты называются первичными ворсинками трофобласта. Они состоят только из клеток самого трофобласта. Трофобласт является первым провизорным органом, образующимся у зародыша человека. Трофобласт в последующем войдет в состав плаценты. Возникновение трофобласта и его первичных ворсинок — это первый этап в развитии плаценты. С помощью трофобласта происходит имплантация, то есть внедрение зародыша в толщу слизистой оболочки матки.

Гаструляция - перемещение клеточного материала и образование зародышевых листков. Существует четыре основных способа гаструляции: инвагинация (впячивание), деляминация (расслоение, расщепление), иммиграция (выселение), эпиболия (обрастание). Деляминация или расслаивание сводится к расщеплению стенки бластулы. Клетки, которые отделяются внутрь, образуют энтодерму, а наружные – эктодерму. Такой способ гаструляции наблюдается у многих беспозвоночных и высших позвоночных животных.

На стадии гаструляции происходит выделение зародышевых листков: эктодерма (наружный листок), мезодерма (средний), энтодерма (внутренний). В наружном зародышевом листке выделяется зачаток нервной пластинки, которая образует желоб, идущий вдоль тела зародыша. Края желоба смыкаются и образуют нервную трубку, погруженную под эктодерму. Этот процесс называется нейруляцией. В области приподнятых краев нервного желоба (ганглионарных валиков) выделяется группа клеток, образующая сплошной клеточный тяж (ганглиозная пластинка). Из первичного внутреннего листка выделяется хордовая пластинка, которая преобразуется в трубку, затем - в плотный клеточный тяж - хорду, расположенную под нервной трубкой. Мелкоклеточный материал энтодермы по краям хорды выпячивается в виде 2-х карманов между энтодермой и эктодермой. Вначале карманы открываются в гастроцель, затем отделяются от нее в виде 2-х новых складок - образуется третий зародышевый листок (мезодерма). По длине мезодермального тяжа образуются перехваты, разделяющие его на отдельные участки (сомиты). После выделения хорды и мезодермы материал внутреннего листка смыкается и образует энтодерму, составляющую стенку первичной кишки зародыша.

Топография эмбриональных зачатков: наружный слой клеток - эктодерма; под ней в дорзальной части - нервная трубка; в вентральной части - первичная кишка (энтодерма); между энтодермой и эктодермой - мезодерма; в дорсальной части под нервной трубкой - хорда. В мезодерме выделяют: дорсальную часть, разделенную на сомиты (склеротом, миотом, дерматом); вентральную часть (париетальный и висцеральный листки); участок мезодермы между дорзальной и вентральной частями называется сегментарными ножками, или нефротомом. Следующий этап эмбриогенеза - гисто- и органогенез, в процессе которого происходит формирование тканей различных органов.

159

Оплодотворение и дробление, образование зиготы

В процессе оплодотворения различают три фазы: 1) дистантное взаимодействие и сближение гамет; 2) контактное взаимодействие и активизация яйцеклетки; 3) вхождение сперматозоида в яйцо и последующее слияние (сингамия). Сперматозоид проникает в область наружного заднего квадранта. В результате оплодотворения образуется зигота: основная масса желтка скапливается на вегетативном полюсе; противоположный полюс называется анимальным. По ходу сперматозоида внутри яйца образуется серп, состоящий из мелкозернистой цитоплазмы, расположенный по одну сторону желтка. На противоположном переднем квадранте зиготы находится передний серп. Анимальный полюс содержит материал будущей эктодермы; на вегетативном полюсе - будущая энтодерма. Задний серп дает мезодерму; передний серп - зачаток хорды и нервной пластинки.

Затем следует период дробления (деление одноклеточного организма). Осуществляется путем последовательной закладки меридианальных и широтных борозд. В результате каждого дробления число образующихся бластомеров увеличивается в два раза.

Типы дробления. Полное дробление (голобластическое) - зигота полностью делится на бластомеры; неполное, или частичное (меробластиче-ское) - когда делится часть зиготы. Дробление бывает равномерным, если образующиеся бластомеры одинаковы или близки по величине, и неравномерным, если они отличаются по размерам. Различают также синхронное дробление, когда бластомеры делятся одновременно, и асинхронное. Стадия развития от начала дробления до образования бластулы называется морулой. Период дробления завершается образованием пузырька (бластулы).

158

Типы яйцеклеток и характеристика их развития.

Яйцеклетка – крупная шаровидная клетка, содержащая желток (белково-липидные включения); имеет несколько оболочек; не может самостоятельно передвигаться. Имеет ядро, цитоплазму, эндоплазматическая сеть слабо развита, митохондрии не имеют крист. На периферии - кортикальные гранулы, содержащие кислые мукополисахариды; исчезают после оплодотворения. По количеству желтка яйцеклетки бывают: алецитальные (не содержат желтка), олиголецитальные (небольшое количество желтка), мезолецитальные (среднее количество желтка), полилецитальные (много желтка). По распределению желтка: изолецитальные (небольшое количество желтка распределено равномерно), умеренно телолецитальные (желток сосредоточен у вегетативного полюса яйцеклетки), резко телолецитальные (желток занимает почти всю яйцеклетку). Яйцеклетка диаметром 130 мкм, к цитолемме прилежит блестящая (прозрачная) зона, состоящая из гликопротеинов и гликозаминоглика-нов (хондроитинсерная, гиалуроновая, сиаловая кислоты) и слой фолликулярных клеток, выполняющих трофическую и защитную функции.

Овогенез (развитие женских половых клеток) проходит три периода: 1) размножение - протекает в период внутриутробного развития, размножаясь, овогонии дают себе подобные клетки; 2) период роста протекает в два этапа - малый и большой рост: в стадию малого роста овоцит 1-го порядка вступает внутриутробно в примордиальном фолликуле, а большой рост осуществляется с началом циклических процессов в яичнике, когда первичный фолликул постепенно вызревает в Граафов пузырек; 3) созревание - при первом редукционном делении образуется овоцит второго порядка и редукционное тельце; при втором делении образуется яйцеклетка и второе редукционное тельце (в процессе овуляции, в маточных трубах).

157

Хромосомная теория пола

 Сочетание половых хромосом между собой определяет пол организма. Клетки женского организма содержат две Х-хромосомы (ХХ). Мужские клетки содержат одну Х и одну Y-хромосомы (ХY). 

      Гаметой женского организма является яйцеклетка. В процессе овогенеза (образования яйцеклетки) яйцеклетка всегда содержит Х-хромосому. Гаметой мужского организма является сперматозоид, который образуется в процессе сперматогенеза и может содержать Х или Y-хромосому. Во время оплодотворения происходит слияние женской яйцеклетки и мужского сперматозоида. Соответственно Х-хромосома во время слияния объединяется с другой половой хромосомой от сперматозоида - Х или Y. При слиянии гаметы (яйцеклетка у женщин и сперматозоид у мужчин) Х-хромосомы матери с гамет с Х-хромосомой отца образуется зигота (структура, образующаяся при слиянии гамет и дает начало новому организму) с двумя Х-хромосомами (ХХ), которая дает начало женскому организму. Если же сливается гамета матери с Х-хромосомой с гамет ой отца с Y-хромосомой, то образуется зигота, которая содержит одну X и одну Y-хромосому (ХY) соответственно давая начало мужском организму. В процессе мейоза происходят хромосомные аберрации. Выделяют 4 типа: 1) делеция (нехватка) - возникает вследствие потери хромосомой какого-либо участка; 2) дупликация (удвоение) - связана с включением лишнего участка хромосомы; 3) инверсия - происходит при разрыве хромосомы и переворачивании оторвавшегося участка на 1800; 4) транслокация - участок хромосомы одной пары прикрепляется к хромосоме из другой пары. К хромосомным болезням приводят нарушения хромосомного набора в зиготе.

Половой хроматин (тельце Барра) - глыбка хроматина в нуклеоплазме под ядерной оболочкой или около ядрышка. У женщин он встречается в 60-80% клеток, у мужчин - 0-4% и рассматривается в качестве генетического признака пола, т.к. он появляется на ранней стадии развития, когда другие признаки дифференцировки не выражены.

156

Овогенез, его стадии, клеточные формы, значение.

Овогенез отличается от сперматогенеза рядом особенностей и проходит в три стадии:

  • размножения;

  • роста;

  • созревания.

Первая стадия — период размножения оогониев — осуществляется в период внутриутробного развития, а у некоторых видов млекопитающих и в первые месяцы постнатальной жизни, когда в яичнике зародыша происходит деление оогониев и формирование первичных фолликулов. Период размножения завершается вступлением клетки в мейоз, - началом дифференцировки в овоцит 1-го порядка. Мейотическое деление останавливается в профазе, и на этой стадии клетки сохраняются до периода полового созревания организма.

Вторая стадия — период роста — протекает в функционирующем зрелом яичнике (после полового созревания девочки) и состоит в превращении овоцита 1-го порядка первичного фолликула в овоцит 1-го порядка в зрелом фолликуле. В ядре растущего овоцита происходят конъюгация хромосом и образование тетрад, а в их цитоплазме накапливаются желточные включения.

Третья (последняя) стадия — период созревания — начинается образованием овоцита 2-го порядка и завершается выходом его из яичника в результате овуляции. Период созревания, как и во время сперматогенеза, включает два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое, и набор их становится гаплоидным. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце. Овоцит 2-го порядка получает почти всю массу накопленного желтка и поэтому остается столь же крупным по объему, как и овоцит 1-го порядка. Редукционное же тельце представляет собой мелкую клетку с небольшим количеством цитоплазмы, получающую по одной диаде хромосом от каждой тетрады ядра овоцита 1-го порядка. При втором делении созревания в результате деления овоцита 2-го порядка образуются одна яйцеклетка и второе редукционное тельце. Первое редукционное тельце иногда тоже делится на две одинаковые мелкие клетки. В результате этих преобразований овоцита 1-го порядка образуются одна яйцеклетка и два или три редукционных (т.н. полярных) тельца.

Гоноциты, мигрирующие из первичной эктодермы через энтодерму желточного мешка в половые валики, трансформируются при половой дифференцировке гонад в оогонии в яичниках. По мере прохождения периода размножения, после многократного деления митозом оогонии вступают в следующий этап дифференцировки половой клетки — ооцит 1-го порядка, в котором происходят важные биологические явления, специфические для половых клеток — конъюгация гомологических родительских хромосом и кроссинговер — обмен участками между хромосомами. Эти процессы происходят в ооцитах 1-го порядка, находящихся в профазе I деления мейоза. В отличие от сперматогенеза прохождение ооцитами 1-го порядка стадий профазы 1 мейоза у большинства видов млекопитающих и человека имеет место в антенатальном периоде. Подобно соматическим клеткам, гоноциты, оогонии и ооциты 1-го порядка на стадиях профазы I деления мейоза содержат диплоидный набор хромосом. Оогония превращается в ооцит 1-го порядка с момента, когда она заканчивает период размножения и входит в период малого роста.

Морфологические перестройки хромосом и ядер в ооцитах при их переходе от одной стадии профазы I деления мейоза в другую аналогичны приведенным для сперматоцитов. В отличие от сперматоцитов на стадии диплотены ооциты в диплотене вовлекаются в формирование фолликула. Именно после этой стадии профазы I деления мейоза ооциты участвуют в последовательных стадиях развития фолликулов. Ооциты в диплотене, заключенные в первичные фолликулы, составляют пул половых клеток, из которого непрерывно часть их вступает в период большого роста. В ооцитах, покинувших пул первичных фолликулов и вступивших в период большого роста, происходит активный синтез р- и иРНК и белка, использующихся не только для роста ооцита, но главным образом на первых этапах развития дробящегося эмбриона. Лишь некоторые из вступивших в рост ооцитов и фолликулов достигают преовуляторного размера, созревают и вступают в метафазу второго деления созревания и могут быть оплодотворены.

Большинство ооцитов в растущих и созревающих фолликулах в разные периоды своего роста претерпевают атрезию. Завершающие этапы периода большого роста ооцита и фолликула, созревания и овуляции происходят циклически и зависят от циклической деятельности системы гипофиз—гипоталамус—яичники.

В начале большого роста фолликулярные клетки, ранее располагавшиеся в виде одного слоя уплощенных клеток, приобретают призматическую форму, делятся путем митоза и фолликулярный эпителий становится многослойным, получая название зернистой зоны (zona granulosa). Среди фолликулярных клеток преовуляторного фолликула различают «темные» и «светлые» клетки. Однако происхождение и значение их остается неясным.

Овуляция. Наступление овуляции — разрыва фолликула и выброса овоцита 2-го порядка в брюшную полость — вызывается действием гипофизарноголютеинизирующего гормона (лютропина), когда выделение его гипофизом резко увеличивается. Овоцит 2-го порядка, окруженный фолликулярным эпителием, из брюшной полости попадает в воронку и далее в просвет маточной трубы. Здесь (при наличии мужских половых клеток) быстро происходит второе деление созревания и образуется зрелая яйцеклетка, готовая к оплодотворению.

Атрезия фолликулов. Значительное число фолликулов не достигает стадии зрелости, а претерпевает атрезию — своеобразную перестройку деструктивного характера. Атрезия овоцитов начинается с лизиса органелл, кортикальных гранул и сморщивания ядра. При этом блестящая зона утрачивает свою шаровидную форму и становится складчатой, утолщается и гиалинизируется. Одновременно атрофируются и клетки зернистого слоя, а интерстициальные клетки оболочки при этом не только не погибают, но, наоборот, усиленно размножаются и, гипертрофируясь, начинают напоминать по форме и виду лютеиновые клетки желтого тела, находящиеся в расцвете.

155

Сперматогенез, его стадии, клеточные формы, значение. Влияние физико-химических факторов на развитие мужских гамет.

Сперматогенез - начало индивидуального развития (прогенез); характеризуется стадиями: 1) размножение - митотическое деление клеток сперматогоний, располагающихся в стенке извитого семенного канальца на периферии около базальной мембраны; представляют собой стволовые и полустволовые клетки: тип А - темные (стволовые) и светлые (полустволовые), тип В; 2) рост - сперматогоний дифференцируются в спер-матоциты 1-го порядка, увеличиваются в объеме и вступают в первое деление мейоза (редукционное деление); 3) созревание - характеризуется двумя редукционными делениями: при первом делении сперматоцит первого порядка дает два сперматоцита второго порядка; при втором из двух сперматоцитов 2-го порядка образуются четыре сперматиды; 4) формирование - сперматиды превращаются в сперматозоиды.

154

Теория развития и основные этапы формирования эмбриологии.

Эмбриология - наука, изучающая закономерности развития зародыша от момента оплодотворения до завершения основных процессов органогенеза. Эмбриогенез человека - часть его онтогенеза, включающая стадии: 1) оплодотворение и образование зиготы; 2) дробление и образование бластулы; 3) гаструляция; 4) гистогенез и органогенез зародышевых и внезародышевых органов; 5) системогенез.

153

Мочеточник и мочевой пузырь.

Мочеточники обладают выраженной способностью к растяжению благодаря наличию в них глубоких продольных складок слизистой оболочки. В подслизистой основе нижней части мочеточников располагаются мелкие альвеолярно-трубчатые железы. Мышечная оболочка, образующая в верхней части мочеточников два, а в нижней части - три слоя, состоит из гладкомышечных пучков, охватывающих мочеточник в виде спиралей, идущих сверху вниз. Они являются продолжением мышечной оболочки почечных лоханок и внизу переходят в мышечную оболочку мочевого пузыря, имеющую также спиралевидное строение. Лишь в той части, где мочеточник проходит через стенку мочевого пузыря, пучки гладких мышечных клеток идут только в продольном направлении. Сокращаясь, они раскрывают отверстие мочеточника независимо от состояния гладких мышц мочевого пузыря.

Спиральная ориентация гладких миоцитов в мышечной оболочке соответствует представлению о порционном характере транспорта мочи из почечной лоханки по мочеточнику. Согласно этому представлению, мочеточник состоит из 3, реже из 2 или 4 секций - цистоидов, между которыми находятся сфинктеры. Роль сфинктеров выполняют расположенные в подслизистой и в мышечной оболочках кавернозноподобные образования из широких извивающихся сосудов. В зависимости от наполнения их кровью сфинктеры оказываются закрытыми или открытыми. Происходит это последовательно рефлекторным образом по мере наполнения секции мочой и повышения давления на рецепторы, находящиеся в стенке мочеточника. Благодаря этому моча поступает порциями из почечной лоханки в вышележащие, а из нее - в нижележащие секции мочеточника, затем в мочевой пузырь. Снаружи мочеточники покрыты соединительнотканной адвентициальной оболочкой.

Слизистая оболочка мочевого пузыря состоит из переходного эпителия и собственной пластинки. В ней мелкие кровеносные сосуды особенно близко подходят к эпителию. В спавшемся или умеренно растянутом состоянии слизистая оболочка мочевого пузыря имеет множество складок. Они отсутствуют в переднем отделе дна пузыря, где в него впадают мочеточники и выходит мочеиспускательный канал. Этот участок стенки мочевого пузыря, имеющий форму треугольника, лишен подслизистой основы, и его слизистая оболочка плотно сращена с мышечной оболочкой. Здесь в собственной пластинке слизистой оболочки заложены железы, подобные железам нижней части мочеточников.

Мышечная оболочка мочевого пузыря построена из трех нерезко отграниченных слоев, которые представляют собой систему спирально ориентированных и пересекающихся пучков гладкомышечных клеток. Гладкие миоциты часто напоминают по форме расщепленные на концах веретена. Прослойки соединительной ткани разделяют мышечную ткань в этой оболочке на отдельные крупные пучки. В шейке мочевого пузыря циркулярный слой формирует мышечный сфинктер.

Наружная оболочка на верхнезадней и боковых (отчасти) поверхностях мочевого пузыря образована типичной серозной оболочкой (висцеральной брюшиной); в остальных участках - типичной адвентициальной оболочкой.

152

Сосудистая система почки.

Архитектоника кровеносной системы почки подчинена авторегуляции почечного кро­вообращения, дифференциации кровотока в корковом и мозговом веществе. Этим целям служат два структурно и функцио­нально разных круга кровообраще­ния в почках: большой (кортикальный) и малый (юкстамедуллярный).

Значение пограничного слоя в регуляции почечного кровообращения огромно, посколь­ку в этой зоне происходит перераспределение крови между корой и пирамидами и устанав­ливается доля участия кортикального и юкста-медуллярного путей в почечном кровотоке. В физиологических условиях перераспределение крови в почках происходит таким образом, что 85—90 % течет по кортикальному и лишь 10— 15 % — по юкстамедуллярному пути.

Сосудистый клубочек нефрона образован кровеносными капиллярами. Эндотелиальные клетки капилляров являются первым элементом фильтрационного барьера, через который из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу. Они располагаются на внутренней поверхности трехслойной мембраны. Со стороны полости капсулы располагаются эпителиальные клетки - подоциты. Таким образом, фильтрационный барьер нефрона представлен тремя элементами: эндотелием капилляров клубочка, подоцитами внутреннего листка капсулы и общей для них трехслойной мембраной.

151

Эндокринный аппарат почки

Эндокринная система почки представлена юкстагломерулярным и простогландиновым аппаратами. ЮГА секретирует гормон ренин, который катализирует образование в организме ангиотензинов, оказывающих сосудосуживающее действие, и стимулирует продукцию гормона альдостерона в надпочечниках. В состав ЮГА входят:

1.Юкстагломерулярные клетки, располагающиеся в стенке приносящих и выносящих артериол под эндотелием.

2 Плотное пятно - участок стенки дистального отдела нефрона в том месте, где проходит рядом с попечным тельцем между приносящей и выносящей артериолами. Плотное пятно действует подобно «натриевому рецептору», улавливая изменение содержания натрия в моче, и воздействует на околоклубочковые клетки, секретирующие ренин.

3.Клетки Гурмагтига, или юкставаскулярные, лежат в треугольном пространстве между приносящей и выносящей артериолами и плотным телом. Простагландиновый аппарат состоит из интерстициальных клеток и нефроцитов собирательных трубочек и оказывает антигипертензивное действие.

150

Нефрон - структурная и функциональная единица почки. Строение фильтрационного барьера и функции, обеспечивающие клубочковую фильтрацию.

Структурной и функциональной единицей почки является нефрон. Нефрон начинается почечным тельцем, состоящим из сосудистого клубочка и капсулы, а затем переходит в проксимальный отдел, петлю нефрона и заканчивается дистальным отделом. Корковое вещество представлено почечными тельцами и извитыми канальцами проксимальной и дистальной части нефрона. В составе мозгового вещества находятся петли Генле нефрона, собирательные трубочки и интерстициальная ткань почки. Нефрон представлен двумя разновидностями: корковые нефроны - (80%) имеют сравнительно короткую петлю Генле. Эти нефроны наиболее активно участвуют в мочеобразовании. У юкстамедуллярных или околомозговьгх нефронов - (20%) петля Генле глубоко уходит в мозговое вещество, остальные части располагаются на границе коркового и мозгового вещества. Эти нефроны образуют более короткий и легкий путь, по которому проходит часть крови через почки в условиях сильного кровенаполнения.

Фильтрационный барьер образуют: 1) фенестрированные эндотелиоциты; 2) трехслойная базальная (гломерулярная мембрана, имеющая сеть из коллагеновых волокон с ячейками 6-7 нм; 3) подоциты с интерпедикулярными щелями, щелевыми диафрагмами и наличием отрицательно заряженной люминальной поверхности. Фильтрационный процесс обеспечивают структурная и функциональная целостность мембраны и наличие нормального фильтрационного давления. Третий клеточный элемент почечного тельца - мезангиоциты. Они влияют на объем первичного фильтрата, синтезируют мезангиальный матрикс и являются макрофагами, синтезируя ИЛ-1, туморонекротический фактор и интерферон. Реабсорбция обеспечивается с помощью активного и пассивного транспорта. В проксимальных извитых канальцах реабсорбируются (облигатная, обязательная реабсорбция) аминокислоты, глюкоза, витамины, низкомолекулярные белки, значительное количество ионов Na+, C1-, НСОэ, часть креатина. В следующих отделах всасывается вода и электролиты. В дистальном отделе происходит факультативная (дополнительная) реабсорбция воды и Na +, регулируемая альдостероном и антидиуретическим гормоном.

149

Особенности развития почки.

В течение эмбрионального развития закладывается 3 парных выделительных органа: головная почка, или предпочка, первичная почка и постоянная, или окончательная почка. Предпочка развивается из передних 8-10 сегментных ножек мезодермы у человека, как мочевыделительный орган не функционирует. Функционирующим органом в течение эмбрионального развития является первичная почка. Она развивается из большинства туловищных сегментных ножек, дающих начало канальцам первичной почки метанефридиям. Последние вступают в контакт с мезонефральным (вольфовым) протоком. От аорты берут начало сосуды, распадающиеся на капиллярные клубочки. Канальцы первичной почки своими слепыми концами обрастают клубочками, образуя капсулы. Таким образом формируются почечные тельца. На 2-м месяце у зародыша формируется окончательная почка. Она образуется из двух источников: 1) мезонефраль-ный проток дает начало мозговому веществу почки, собирательным трубкам, почечной лоханке, почечным чашечкам, мочеточнику; 2) нефрогенная ткань - корковому веществу почки или почечным канальцам.

148

Источники развития, строение и основные функции почки.

Строение. Почка покрыта соединительнотканной капсулой и, кроме того, спереди — серозной оболочкой. Вещество почки подразделяется на корковое и мозговое. Корковое вещество (cortex renis) образует сплошной слой под капсулой органа. В процессе развития почки ее корковое вещество, увеличиваясь в массе, проникает между основаниями пирамид в виде почечных колонок (столбы Бертена). Мозговое вещество (medulla renis) состоит из 10-18 конических мозговых пирамид, от основания которых в корковое вещество врастают мозговые лучи.

Пирамида с покрывающим ее участком коры образует почечную долю, а мозговой луч с окружающим его корковым веществом - почечную дольку.

Строму почки составляет рыхлая волокнистая соединительная ткань (интерстиций).

Паренхима почки представлена почечными тельцами и эпителиальными канальцами, которые при участии кровеносных сосудов образуют нефроны. В каждой почке их насчитывают около 1 млн.

Основной функцией почек является выведение из организма воды и водорастворимых веществ (конечных продуктов обмена веществ). С экскреторной функцией тесно связана функция регуляции ионного и кислотно-основного равновесия внутренней среды организма (гомеостатическая функция). Обе функции контролируются гормонами. Кроме того, почки выполняют эндокринную функцию, принимая непосредственное участие в синтезе многих гормонов. Наконец, почки участвуют в процессах промежуточного метаболизма, особенно в глюконеогенезе и расщеплении пептидов и аминокислот. Через почки проходит очень большой объем крови: 1500 л в сутки. Из этого объема отфильтровывается 180 л первичной мочи. Затем объем первичной мочи существенно снижается за счет реабсорбции воды, в итоге суточный выход мочи составляет 0,5-2,0 л.

147

Надпочечник: мозговое вещество, гормоны и их значение.

Мозговое вещество надпочечников проще по гистологическому строению, чем корковое вещество и состоит из нервных и железистых клеток, а также нервных волокон. В отличие от коркового вещества, которое является жизненно важным внутренним органом, мозговое вещество надпочечников не является обязательным для нормального функционирования организма (после его хирургического удаления человек не испытывает никаких неудобств). Этим мы отличаемся от животных - мозговое вещество надпочечников необходимо им для выживания, ведь оно продуцирует гормоны, необходимые для атаки, бегства и спасения своей жизни. Этими биологически активными веществами являются относительно простые по строению гормоны - адреналин и норадреналин. Сравнить важность коркового вещества и мозгового вещества достаточно легко - в целом надпочечники выделяют около 50 биологически активных веществ (гормонов) и 41 из них продуцируется корой надпочечников, а всего лишь 9 - мозговым веществом. В мозговом веществе коры надпочечника различают 2 типа хромаффиноцитов: клетки А - адреноциты, или эпинефроциты (80-90%) и клетки Н - норадреноциты (10-20%). Клетки А синтезируют адреналин - гормон эмоций, клетки Н - норадреналин - медиатор адренергических синапсов.

Гормоны мозгового вещества надпочечников. Основным гормоном мозгового вещества является адреналин. Он производится в надпочечниках и содержится во многих тканях и внутренних органах. Надпочечники начинают резко вырабатывать адреналин в больших количествах при попадании человека в стрессовую, некомфортную ситуацию.

Соседние файлы в папке экз