Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vydel__end_adapt_stress_Stud.doc
Скачиваний:
568
Добавлен:
27.03.2017
Размер:
3.57 Mб
Скачать

Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Владивостокский государственный медицинский университет»

Министерства здравоохранения и социального развития

Российской Федерации

Кафедра нормальной физиологии

Методические разработки практических занятий

по нормальной физиологии для студентов

Раздел: Физиология выделительной и эндокринной системы

Адаптация и стресс

Утверждено на заседании кафедры

Составитель: д.м.н., профессор Маркина Л.Д.

к.м.н., асс. Ломоносова Н.Э.

Владивосток

2012

Тема 1. Физиология выделения

Механизмы мочеобразования

Время:2 часа.

Учебная цель: уяснить роль органов выделения в обеспечении гомеостаза организма.

Изучить основные положения фильтрационно–реабсорбционно–секреторной теории образования мочи.

Содержание занятия.

1.Основное назначениеорганов выделениясостоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови.

Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. Легкие выводят из организма СO2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении. Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты) и чужеродных органических соединений. Экскреторную функцию выполняет печень, удаляя из крови ряд продуктов азотистого обмена. Поджелудочная железа и кишечные железы экскретируют тяжелые металлы, лекарственные вещества. Через железы кожи из организма выводятся вода и соли, некоторые органические вещества, в частности мочевина, а при напряженной мышечной работе — молочная кислота.

Почки выполняют ряд гомеостатических функций в организме человека и высших животных. К функциям почекотносятся следующие:

1) участие в регуляции объема крови и внеклеточной жидкости (волюморегуляция);

2) регуляция концентрации осмотически активных веществ в крови и других жидкостях тела (осморегуляция);

3) регуляция ионного состава сыворотки крови и ионного баланса организма {ионная регуляция);

4) участие в регуляции кислотно-основного состояния {стабилизация рН крови);

5) участие в регуляции артериального давления, эритропоэза, свертывания крови, модуляции действия гормонов благодаря образованию и выделению в кровь биологически активных веществ (инкреторная функция);

6) участие в обмене белков, липидов и углеводов (метаболическая функция);

7) выделение из организма конечных продуктов азотистого обмена и чужеродных веществ, избытка органических веществ (глюкоза, аминокислоты и др.), поступивших с пищей или образовавшихся в процессе метаболизма (экскреторная функция).

Экскреторная функция почекзаключается в выделении из крови нелетучих конечных продуктов обмена и чужеродных веществ. В процессе метаболизма белков и нуклеиновых кислот образуются различные продукты азотистого обмена (мочевина, мочевая кислота, креатинин и др.). Экскретируемая фракция мочевой кислоты довольно низкая (9,8 %), что указывает на реабсорбцию значительного количества мочевой кислоты в канальцах. Нарушение обмена мочевой кислоты приводит к такому заболевания как подагра.

 При изучении состава крови у людей с удаленными почками помимо мочевины, креатинина, мочевой кислоты, в их крови накапливаются гормоны (глюкагон, паратгормон, гастрин), ферменты (рибонуклеаза, ренин), производные индола, глюкуроновая кислота и др.

В почках вырабатывается несколько биологически активных веществ, позволяющих рассматривать ее как инкреторный орган. Гранулярные клетки юкстагломерулярного аппарата выделяют в кровь ренин.  В почке синтезируется активатор плазминогена — урокиназа. В мозговом веществе почки образуются простагландины. Они участвуют, в частности, в регуляции почечного и общего кровотока, увеличивают выделение натрия с мочой, уменьшают чувствительность клеток канальцев к АДГ. Клетки почки извлекают из плазмы крови образующийся в печени прогормон — витамин D3и превращают его в физиологически активный гормон — активные формы витамина D3. Этот стероид стимулирует образование кальцийсвязывающего белка в кишечнике, способствует освобождению кальция из костей, регулирует его реабсорбцию в почечных канальцах. Почка является местом продукции эритропоэтина, стимулирующего эритропоэз в костном мозге. В почке вырабатывается брадикинин, являющийся сильным вазодилататором.

 Метаболическая функция почек  обусловлена участием почек в обеспечении постоянства концентрации в крови ряда физиологически значимых органических веществ. В почечных клубочках фильтруются низкомолекулярные белки, пептиды. Клетки проксимального отдела нефрона расщепляют их до аминокислот или дипептидов и транспортируют через базальную плазматическую мембрану в кровь. Это способствует восстановлению в организме фонда аминокислот, что важно при дефиците белков в рационе. Почки способны синтезировать глюкозу (глюконеогенез). При длительном голодании почки могут синтезировать до 50 % от общего количества глюкозы, образующейся в организме и поступающей в кровь. Почки являются местом синтеза фосфатидилинозита — необходимого компонента плазматических мембран. Для энерготрат почки могут использовать глюкозу или свободные жирные кислоты. При низком уровне глюкозы в крови клетки почки в большей степени расходуют жирные кислоты, при гипергликемии преимущественно расщепляется глюкоза. Значение почек в липидном обмене состоит в том, что свободные жирные кислоты могут в клетках почек включаться в состав триацилглицерина и фосфолипидов и в виде этих соединений поступать в кровь.

2. В каждой почке у человека содержится около 1 млн функциональных единиц —нефронов, в которых происходит образование мочи.

Каждый нефрон начинается почечным, или мальпигиевым, тельцем — двустенной капсулой клубочка (капсула Шумлянского—Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Особенностью клеток этого канальца является наличие щеточной каемки — большого количества микроворсинок, обращенных в просвет канальца. Следующий отдел нефрона — тонкая нисходящая часть петли нефрона (петля Генле). Ее стенка образована низкими, плоскими эпителиальными клетками. Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца прикасается к клубочку в области плотного пятна между приносящей и выносящей артериолами. Конечный отдел нефрона — короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки.

В почке функционирует несколько типов нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные. Различие между ними заключается в локализации в почке, величине клубочков (юкстамедуллярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев в корковом веществе почки (клубочки юкстамедуллярных нефронов лежат у границы коркового и мозгового вещества) и в длине отдельных участков нефрона, особенно петель нефрона. Суперфициальные нефроны имеют короткие петли, юкстамедуллярные, напротив, длинные, спускающиеся во внутреннее мозговое вещество почки.

Характерна строгая зональность распределения канальцев внутри почки. В корковом веществе находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки; во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке определяет форму участия тех или иных нефронов в деятельности почки, в частности в осмотическом концентрировании мочи.

 Кровоснабжение почки.В обычных условиях через обе почки проходит от 1/5 до 1/44 крови, поступающей из сердца в аорту. Кровоток по корковому веществу почки достигает 4—5 мл/мин на 1 г ткани; это наиболее высокий уровень органного кровотока. В условиях изменения системного артериального давления в широких пределах (от 90 до 190 мм рт. ст.) почечный кровоток остается постоянным. Это обусловлено специальной системой саморегуляции кровообращения в почке.

 Короткие почечные артерии отходят от брюшного отдела аорты, разветвляются в почке на все более мелкие сосуды, и одна приносящая (афферентная) артериола входит в клубочек. Здесь она распадается на капиллярные петли, которые, сливаясь, образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Диаметр эфферентной артериолы уже, чем афферентной. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, затем у канальцев. Отличие кровоснабжения юкстамедуллярного нефрона заключается в том, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, спускающиеся в мозговое вещество почки. Эти сосуды обеспечивают кровоснабжение мозгового вещества почки.

3. Образование конечной мочи является результатом трех последовательных процессов.

 I. В почечных клубочках происходит начальный этап мочеобразования — клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

 II. Канальцевая реабсорбция— процесс обратного всасывания профильтровавшихся веществ и воды.

 III. Секреция.Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

Скорость гломерулярной фильтрации, реабсорбции и секреции регулируется в зависимости от состояния организма при участии гормонов, эфферентных нервов или локально образующихся биологически активных веществ — аутакоидов.

4. Фильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этотфильтрационный барьерпочти непроницаем для высокомолекулярных веществ. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы— подоцитов.

 Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. Наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий.

  Важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм. Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000 и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).

 Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками».

Уровень клубочковой фильтрации зависит от разности между гидростатическим давлением крови (около 70 – 80 мм рт. ст. в капиллярах клубочка), онкотическим давлением белков плазмы крови (около 20 - 30 мм рт. ст.) и гидростатическим давлением в капсуле клубочка (около 10-20 мм рт. ст.). Эффективное фильтрационное давление, определяющее скорость клубочковой фильтрации, составляет 20—25 мм рт. ст. [70мм рт. ст. — (30 мм рт. ст. + 20 мм рт. ст.) = 20 мм рт. ст.]. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превышает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка.

 В обычных условиях в почке человека за сутки образуется до 180 л ультрафильтрата, а выделяется 1,0—1,5 л мочи, остальная жидкость всасывается в канальцах. Ультрафильтрат практически не содержит белков, но подобен плазме по общей концентрации осмотически активных веществ, глюкозы, мочевины, мочевой кислоты, креатинина и др.

 

Юкстагломерулярный аппаратморфологически образует подобие треугольника, две стороны которого представлены подходящими к клубочку афферентной и эфферентной артериолами, а основание — клетками плотного пятна (mucula densa) дистального канальца. Внутренняя поверхность афферентной артериолы выстлана эндотелием, а мышечный слой вблизи клубочка замещен крупными эпителиальными клетками, содержащими секреторные гранулы. Гранулярные клетки юкстагломерулярного аппарата выделяют в кровь ренин при уменьшении артериального давления в почке, снижении содержания натрия в организме, при переходе человека из горизонтального положения в вертикальное. Уровень выброса ренина из клеток в кровь изменяется и в зависимости от концентрации Na+и С1- в области плотного пятна дистального канальца, обеспечивая регуляцию электролитного и клубочково-канальцевого баланса. Ренин представляет собой протеолитический фермент. В плазме крови он отщепляет от ангиотензиногена, находящегося главным образом во фракции α2-глобулина, физиологически неактивный пептид, состоящий из 10 аминокислот, — ангиотензин I. В плазме крови под влиянием ангиотензинпревращающего фермента от ангиотензина I отщепляются 2 аминокислоты, и он превращается в активное сосудосуживающее вещество ангиотензин II. В результате повышается артериальное давление благодаря сужению артериальных сосудов, усиливается секрецию альдостерона, увеличивается чувство жажды, регулируется реабсорбция натрия в дистальных отделах канальцев и собирательных трубках. Все перечисленные эффекты способствуют нормализации объема крови и артериального давления.

5. Канальцевая реабсорбциядеятельность клеток почечных канальцев, в результате которой различные вещества возвращаются в кровь и межклеточную жидкость. В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, СI-,НСОз. В последующих отделах  нефрона всасываются преимущественно электролиты  и вода. В проксимальном отделе нефрона реабсорбция веществ происходит через высокопроницаемую для воды мембрану стенки канальца. В толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца.

Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный.Первично-активнымтранспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ.Вторично-активнымназывается перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки.   Фильтруемаяглюкозапрактически полностью реабсорбируется клетками проксимального канальца. Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным.Аминокислоты почти полностью реабсорбируются клетками проксимального канальца.

 Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта— по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.

Выделение с мочой слабых кислот и основанийзависит от их клубочковой фильтрации, процесса реабсорбции или секреции. Слабые кислоты и основания могут существовать в зависимости от рН среды в двух формах — неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большей скоростью экскретируются с щелочной мочой, а слабые основания, напротив, — с кислой. Степень ионизации оснований увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества через липиды мембран проникают в клетки, а затем в плазму крови, т. е. они реабсорбируются. Если значение рН канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой.

Небольшое количество профильтровавшегося в клубочках белкареабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

 6. В выделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Секреция органических кислот (феноловый красный, парааминогиппуровой (ПАГ), диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках.

 При введении ПАГ в кровь человека ее выделение с мочой зависит от фильтрации в клубочках и секреции клетками канальцев. Принцип секреторного процесса при транспорте органических соединений состоит в том, что в мембране клетки проксимального канальца, обращенной к интерстициальной жидкости, имеется переносчик А, обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс А—ПАГ, который обеспечивает перемещение ПАГ через мембрану, и на ее внутренней поверхности ПАГ освобождается в цитоплазму. При этом переносчик снова приобретает способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Уровень секреции зависит от числа переносчиков в мембране. Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и с помощью имеющегося в ней специального механизма выделяется в просвет канальца..

 Подобно секреции органических кислот, секреция органических оснований (например, холина) происходит в проксимальном сегменте нефрона.

 Транспорт в нефроне К+характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При секреции К+поступает в клетку в обмен на Na+через эту же мембрану с помощью  натрий-калиевого насоса, который удаляет Na+ из клетки; тем самым поддерживается высокая внутриклеточная концентрация К+. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К+ мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К+ по градиенту концентрации может выходить из клетки. Скорость секреции К+ зависит от градиента электрохимического потенциала на этой мембране клетки: чем больше электроотрицательность апикальной мембраны, тем выше уровень секреции. При дефиците К+ в организме клетки конечных отделов нефрона и собирательных трубок прекращают секрецию К+ и только реабсорбируют его из канальцевой жидкости. В этом случае К из просвета канальца транспортируется через апикальную плазматическую мембрану внутрь клетки, движется по цитоплазме в сторону основания клетки и через базальную плазматическую мембрану поступает в тканевую жидкость, а затем в кровь.

7. Способностью к осмотическому разведению мочи, т. е. способностью к выделению мочи с меньшей концентрацией осмотически активных веществ, а следовательно, с меньшим осмотическим давлением, чем плазма крови, обладают почки млекопитающих,птиц, рептилий, амфибий, пресноводных рыб и круглоротых. В то же время способностью к образованию мочи с большей концентрацией осмотически активных веществ, т. е. с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Образование осмотически концентрированной мочи обусловлено деятельностьюповоротно-противоточной множительной системы в почке.

В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, напротив, осмотически концентрированную (осмотическое концентрирование) мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функционируют как поворотно-противоточная множительная система. 

Функциональное значение различных отделов петли нефрона неоднозначно. Поступающая из проксимального канальца, в тонкий нисходящий отдел петли нефрона жидкость попадает в зону почки, в интерстициальной ткани которой концентрация осмотически активных веществ выше, чем в корковом веществе почки. Вода всасывается из просвета канальца в окружающую интерстициальной ткань по осмотическому градиенту, а осмотически активные вещества остаются в просвете канальца. Их концентрация составляет уже около 200 мосмоль/кг Н2О, т. е. она ниже, чем в ультрафильтрате . Чем дальше от коркового вещества по длиннику почечного сосочка находится жидкость в нисходящем колене петли, тем выше ее осмоляльная концентрация. Вдоль мозгового вещества почки осмоляльная концентрация жидкости в просвете канальца и в интерстициальной ткани постепенно растет от 300 до 1450 мосмоль/кг Н2О. На вершине мозгового вещества почки осмоляльная концентрация жидкости в петле нефрона возрастает в несколько раз, а ее объем уменьшается. При дальнейшем движении жидкости по восходящему отделу петли нефрона, особенно в толстом восходящем отделе петли, продолжается реабсорбция С1- и Na+, вода же остается в просвете канальца. В начальные отделы дистального извитого канальца всегда — и при водном диурезе, и при антидиурезе — поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосмоль/кг Н2О.

Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют противоточную систему. При прохождении крови по прямым сосудам наблюдаются такие же изменения ее осмотической концентрации, как и в тонком нисходящем отделе петли нефрона. При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней постепенно возрастает, а во время обратного движения крови к корковому веществу соли и другие вещества, диффундирующие через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки и прямые сосуды функционируют как противоточная система. 

Таким образом, деятельность петли нефрона, конечных частей дистального сегмента и собирательных трубок обеспечивает способность почек вырабатывать большие объемы разведенной (гипотонической) мочи — до 900 мл/ч, а при дефиците воды экскретировать всего 10—12 мл/ч мочи, в 4,5 раза более осмотически концентрированной, чем кровь. Способность почки осмотически концентрировать мочу исключительно развита у некоторых пустынных грызунов, что позволяет им длительное время обходиться без воды.

Соседние файлы в предмете Нормальная физиология