Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физика ответы зачет 1 семестр

.docx
Скачиваний:
63
Добавлен:
21.04.2017
Размер:
181.68 Кб
Скачать

34 Диаграмма адиабатического процесса (адиабата) в координатах р, V изображается гиперболой . адиабата (pV= const) более крута, чем изотерма (pV= const). Это объясняется тем, что при адиабатическом сжатии увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

35 при адиабатическом процессе давление изменяется с изменением объема резче, чем при изотермическом процессе. При адиабатическом расширении (сжатии) газа уменьшается (увеличивается) его температура и это объясняет более резкое падение (возрастание) давления по сравнению с изотермическим расширением.

36 Если внешнее воздействие на систему проводить в прямом и обратном направлениях, например, чередовать расширение и сжатие, перемещая поршень в цилиндре, то параметры состояния системы также будут меняться в прямом и обратном направлениях. Заданные извне параметры состояния называют внешними параметрами. В рассматриваемом нами простейшем случае роль внешнего параметра выполняет объем системы. Обратимыми называются такие процессы, для которых при прямом и обратном изменении внешних параметров система будет проходить через одни и те же промежуточные состояния.  Поясним на примере, что это не всегда справедливо. Если мы будем двигать поршень вверх-вниз очень быстро, так что равномерность концентрации газа в цилиндре не будет успевать установиться, то при сжатии под поршнем будет возникать уплотнение газа, а при расширении - разрежение, то есть промежуточные состояния системы (газа) при одном и том же положении поршня будут различными в зависимости от направления его движения. Это пример необратимого процесса. Если же поршень двигается достаточно медленно, так что концентрация газа успевает выравняться, то при прямом и обратном движениях система будет проходить через состояния с одинаковыми параметрами при одинаковом положении поршня. Это - обратимый процесс.

37 Изменение температуры реального газа в результате его адиабатического расшире­ния, или, как говорят, адиабатического дросселирования — медленного прохождения газа под действием перепада давления сквозь дроссель (например, пористую перегород­ку), называется эффектом ДжоуляТомсона. Эффект Джоуля — Томсона принято называть положительным, если газ в процессе дросселирования охлаждается (T<0), и отрицательным, если газ нагревается (T> 0).

В зависимости от условий дросселирования для одного и того же газа эффект Джоуля — Томсона может быть как положительным, так и отрицательным. Тем­пература, при которой (для данного давления) происходит изменение знака эффекта Джоуля — Томсона, называется температурой инверсии. Ее зависимость от объема:

38 Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широ­кий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую.

Под вогнутой поверхностью жидкости появится отрицательное избыточное давле­ние, определяемое по формуле Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, таккак под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) gh уравновеши­вается избыточным давлением p, т. е.

где плотность жидкости, g ускорение свободного падения

39 Фазой называется термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества.Переход вещества из одной фазы в другую — фазовый переход — всегда связан с качественными измене­ниями свойств вещества.Фазовый переход I рода (например, плавление, кристаллизация и т. д.) сопровождается поглощением или выделением теплоты, называемой теплотой фазового перехода. Фазовые переходы I рода харак­теризуются постоянством температуры, изменениями энтропии и объема.Фазовые переходы, не связанные с поглощением или выделением теплоты и измене­нием объема, называются фазовыми переходами II рода.Эти переходы характеризуют­ся постоянством объема и энтропии, но скачкообразным изменением теплоемкости.Фазовые переходы II рода связаны с изменени­ем симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода.

40 Из обобщения опытных данных был установлен фундаментальный закон природы закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними тела­ми) остается неизменной, какие бы процессы ни происходили внутри этой системы. Единица электрического заряда (производная единица, так как определяется через единицу силы тока) — кулон (Кл) — электрический заряд, проходящий через попереч­ное сечение проводника при силе тока 1 А за время 1 с.

41 Формулировка закона Кулона: «Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой так, что одноименные заряды отталкиваются, а разноименные притягиваются».

где k – коэффициент пропорциональности; q1 и q2 - величины взаимодействующих зарядов; r – расстояние между ними; r – радиус-вектор, проведенный от одного заряда к другому и направленный к тому из зарядов, на который действует сила.

42 Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

Направление вектора Е совпадает с направлением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду

Из формулы следует, что единица напряженности электростатического по­ля — ньютон на кулон (Н/Кл): 1 Н/Кл — напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл= 1 В/м, где В (вольт) — еди­ница потенциала электростатического поля.

43 Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды. Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями , и , соответственно, где  — это радиус-вектор. Зная эти функции мы можем определить полный заряд:

44 Потенциал — физическая величина, определяемая работой по переме­щению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля. Потенциал в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещен­ного в эту точку. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного поло­жительного заряда из точки 1 в точку 2.

45 Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала. Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна

силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

46 Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность. В СИ потенциал измеряется в вольтах:

47 сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

где Q электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единила силы тока — ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Единица плотности тока — ампер на метр в квадрате (А/м2).

48. Для того чтобы происходило возникновение и осуществлялось поддержание тока в какой-либо среде, необходимо чтобы выполнялись следующие условия: 1. необходимо чтобы в среде существовали свободные электрические заряды, 2. необходимо чтобы в среде возникало электрическое поле.

49 Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил. Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д. Всякое устройство, в котором возникают сторонние силы, называется источником электрического тока. Сторонние силы характеризуют работой, которую они совершают над перемещаемыми по электрической цепи носителями заряда. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в электрической цепи или на ее участке.

50 . ЭДС. Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил. Сторонние силы характеризуют работой, которую они совершают над перемещаемыми по электрической цепи носителями заряда. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в электрической цепи или на ее участке. Напряжение. напряжением называется физическая величина,определяемая работой,совершаемой суммарным полем электростатических(кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае,если на этом участке не действует ЭДС,т.е. сторонние силы отсутствуют.

51 . Закон Ома – это экспериментальный закон, согласно которому сила тока, текущего по проводнику, пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

 

.

(13)

Соотношение (13) иначе называют законом Ома в интегральной форме записи. Это соотношение можно распространить на отдельные участки и всю замкнутую электрическую цепь, учитывая формулы (10), (11), (12) и внутреннее сопротивление источника тока r. При этом получим частные случаи закона Ома:

а) неоднородный участок цепи:

 

.

(14)

Формулу (14) называют обобщённым законом Ома в интегральной форме записи;

б) однородный участок цепи :

 

;

(15)

в) цепь замкнута :

 

.

52 . Первое правило Кирхгофа алгебраическая сумма токов, сходящихся в узле, равна нулю.  Первое правило Кирхгофа является следствием закона сохранения заряда, согласно которому ни в одной точке проводника не должны накапливаться или исчезать заряды.  Первое правило Кирхгофа можно сформулировать и так: количество зарядов, приходящих в данную точку проводника за некоторое время, равно количеству зарядов, уходящих из данной точки за то же время.  Второе правило Кирхгофа является обобщением закона Ома. Второе правило Кирхгофа - в любом замкнутом контуре разветвленной цепи алгебраическая сумма ЭДС равна алгебраической сумме произведений токов на сопротивления соответствующих участков этого контура:  Правила Кирхгофа позволяют определить силу и направление тока в любой части разветвленной цепи, если известны сопротивления ее участков и включенные в них ЭДС.

53.тепловое движение является хаотическим, а электрический ток-направленное движение электронов

54 . Несамостоятельным разрядом называется такой разряд, в котором ток поддерживается только за счет непрерывного образования заряженных частиц по какой-либо внешней причине и прекращается после прекращения действия источника образования зарядов. Заряды могут создаваться как на поверхности электродов, так и в объеме разрядной трубки. Самостоятельные разряды характеризуются тем, что заряженные частицы, необходимые для поддержания разряда, создаются в процессе самого разряда, то есть их количество по крайней мере не уменьшается с течением времени (при неизменном приложенном напряжении). условия: Лишь при создании особых условий в газах появляются носители тока (ионы, электроны) и возникает электрический разряд. Газ становится проводником электрического тока, когда некоторая часть его молекул ионизируется, т.е. происходит расщепление молекул на ионы и электроны.

55 . Искровой разряд, наблюдающийся при нормальном давлении и большой напряженности поля между электронами, имеет вид прерывистых ярких зигзагообразных нитей – каналов ионизованного газа. Нити пронизывают пространство между электродами и исчезают, сменяясь новыми. При этом наблюдается яркое свечение газа и выделяется большое количество теплоты. В искровых каналах, где создаются высокое давление и весьма высокие температуры, возникают электронные и ионные лавины, которыми определяются все свойства искрового разряда. Его примером является молния. Главный канал молнии имеет диаметр от 10 до 25 см. Длина молнии достигает нескольких километров, и в ней развивается сила тока в импульсе до сотен тысяч ампер.

56 За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует

на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близ­ких точках поля, то силы, действующие на оба полюса, равны друг другу. Следо­вательно, на магнитную стрелку действу­ет пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направле­нием поля

57 Магнитная индукция в данной точке однородного магнитного поля определяет­ся максимальным вращающим моментом, действующим на рамку с магнитным мо­ментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля.

линии магнитной индукции — линий, касательные к кото­рым в каждой точке совпадают с направ­лением вектора В.

58 Важной особенностью линий магнитного поля является то, что они не имеют ни начала, ни конца. Они всегда замкнуты. Вспомним, что с электростатическим полем дело обстоит иначе. Его силовые линии во всех случаях имеют источник: они начинаются на положительных зарядах и оканчиваются на отрицательных. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле. Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобных электрическим, в природе нет.

59 Единица магнитной индукции — тесла (Тл): 1 Тл—магнитная индукция такого однородного магнитного поля, которое действует с силой в 1 Н на каждый метр длины прямолинейного проводника, распо­ложенного перпендикулярно направлению поля, если по этому проводнику проходит ток в 1 А:

1Тл=1Н/(А•м).

Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4•10-7 Тл

60 Если два параллельных проводника с то­ком находятся в вакууме (=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна

Для нахождения числового значения 0 воспользуемся определением ампера, со-

гласно которому при I1=I2=1А и R=1 м

dF/dl=2•10-7 Н/м. Подставив это значение в формулу (112.1), получим 0=4•10-7 Н/А2=4•10-7 Гн/м,

где генри (Гн) — единица индуктивности.

61 Циркуляция вектора Е электростатического поля всегда равна нулю, т. е. электростатическое поле является потенциальным, циркуляция вектора В магнитного поля не равна нулю. Такое поле называется вихревым.

62 Поток вектора магнитной индук­ции ФB через произвольную поверхность S равен

Для однородного поля и плоской по­верхности, расположенной перпендикуляр­но вектору В, Bn=B=const и

ФВ=ВS.

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, рас­положенную перпендикулярно однородно­му магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл•м2).

Соседние файлы в предмете Физика