Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

semGABA

.pdf
Скачиваний:
22
Добавлен:
16.09.2017
Размер:
368.13 Кб
Скачать

ОБЗОРЫ

69.

I. Soltesz, D. K. Smetters, and I. Mody, “Tonic inhibition originates from

79.

B. Cauli, J. T. Porter, K. Tsuzuki, et al., “Classification of fusiform

 

synapses close to the soma,” Neuron, 14, No. 6, 1273-1283 (1995).

 

neocortical interneurons based on unsupervised clustering,” Proc.

70.

D. J. Rossi and M. Hamann, “Spillover-mediated transmission at

 

Natl. Acad. Sci. USA, 97, No. 11, 6144-6149 (2000).

 

inhibitory synapses promoted by high affinity alpha6 subunit

80.

A. R. Granata, “Effects of gamma-aminobutyric acid on putative

 

GABA(A) receptors and glomerular geometry,” Neuron, 20, No. 4,

 

sympatho-excitatory neurons in the rat rostral ventrolateral medulla

 

783-795 (1998).

 

in vitro. Intracellular study,” Neurosci. Lett., 300, No. 1, 49-53

71.

H. L. Gaspary, W. Wang, and G. B. Richerson, “Carrier-mediated

 

(2001).

 

GABA release activates GABA receptors on hippocampal neurons,”

81.

D. Cattaert and A. El Manira, “Shunting versus inactivation: analysis

 

J. Neurophysiol., 80, No. 1, 270-281 (1998).

 

of presynaptic inhibitory mechanisms in primary afferents of the

72.

Q. Y. Liu, A. E. Schaffner, Y. H. Chang, et al., “Persistent activation

 

crayfish,” J. Neurosci., 19, No. 14, 6079-6089 (1999).

 

of GABA(A) receptor/Clchannels by astrocyte-derived GABA in

82.

M. F. Jackson, B. Esplin, and R. Capek, “Inhibitory nature of

 

cultured embryonic rat hippocampal neurons,” J. Neurophysiol.,

 

tiagabine-augmented GABAA receptor-mediated depolarizing

 

84, No. 3, 1392-1403 (2000).

 

responses in hippocampal pyramidal cells,” J. Neurophysiol., 81,

73.

L. S. Overstreet and G. L. Westbrook, “Paradoxical reduction of synaptic

 

No. 3, 1192-1198 (1999).

 

inhibition by vigabatrin,” J. Neurophysiol., 86, No. 2, 596-603 (2001).

83.

C. R. Shields, M. N. Tran, R. O. Wong, et al., “Distinct ionotropic

74.

J. Lerma, A. S. Herranz, O. Herreras, et al., “In vivo determination

 

GABA receptors mediate presynaptic and postsynaptic inhibition

 

of extracellular concentration of amino acids in the rat hippocampus.

 

in retinal bipolar cells,” J. Neurosci., 20, No. 7, 2673-2682 (2000).

 

A method based on brain dialysis and computerized analysis,” Brain

84.

Z. H. Pan, “Voltage-activated Ca2+ channels and ionotropic GABA

 

Res., 384, No. 1, 145-155 (1986).

 

receptors localized at axon terminals of mammalian retinal bipolar

75.

B. Birnir, A. B. Everitt, M. S. Lim, et al., “Spontaneously opening

 

cells,” Vis. Neurosci., 18, No. 2, 279-288 (2001).

 

GABA(A) channels in CA1 pyramidal neurones of rat hippocampus,”

85.

C. A. Hubner, V. Stein, I. Hermans-Borgmeyer, et al., “Disruption

 

J. Membrane Biol., 174, No. 1, 21-29 (2000).

 

of KCC2 reveals an essential role of K-Cl cotransport already in

76.

B. Birnir, M. Eghbali, A. B. Everitt, et al., “Bicuculline, pentobarbital

 

early synaptic inhibition,” Neuron, 30, No. 2, 515-524 (2001).

 

and diazepam modulate spontaneous GABA(A) channels in rat

86.

Z. Nusser, W. Sieghart, and P. Somogyi, “Segregation of different

77.

hippocampal neurons,” Br. J. Pharmacol., 131, No. 4, 695-704 (2000).

 

GABAA receptors to synaptic and extrasynaptic membranes of

T. R. Neelands, J. L. Fisher, M. Bianchi, et al., “Spontaneous and

 

cerebellar granule cells,” J. Neurosci., 18, No. 5, 1693-1703 (1998).

 

gamma-aminobutyric acid (GABA)-activated GABA(A) receptor

87.

S. G. Brickley, V. Revilla, S. G. Cull-Candy, et al., “Adaptive regulation

 

channels formed by epsilon subunit-containing isoforms,” Mol.

 

of neuronal excitability by a voltage-independent potassium

 

Pharmacol., 55, No. 1, 168-178 (1999).

 

conductance,” Nature, 409, No. 6816, 88-92 (2001).

78.

M. Hausser and B. A. Clark, “Tonic synaptic inhibition modulates

88.

F. Duprat, F. Lesage, M. Fink, et al., “TASK, a human background

 

neuronal output pattern and spatiotemporal synaptic integration,”

 

K+ channel to sense external pH variations near physiological pH,”

 

Neuron, 19, No. 3, 665-678 (1997).

 

EMBO J., 16, No. 17, 5464-5471 (1997).

92

НЕЙРОФИЗИОЛОГИЯ / NEUROPHYSIOLOGY.2002.T. 34, № 1