Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

естественно

.PDF
Скачиваний:
79
Добавлен:
01.11.2017
Размер:
6.96 Mб
Скачать

121

дели однослойной нейронной сети, названной персептроном. Она была использована для такого широкого класса задач, как предсказание погоды, анализ электрокардиограмм и искусственное зрение. Первые успехи вызвали всплеск оптимизма и послужили стимулом для продолжения исследований. Однако вскоре выяснилось, что созданные сети не способны решать некоторые задачи, существенно не отличающиеся от тех, которые они решали успешно. Позднее Маврин Минский, используя точные математические методы, строго доказал ряд теорем, показав, что используемые однослойные сети теоретически не способны решить многие простые задачи, например, реализовать логическую функцию "Исключающее ИЛИ". Безупречность доказательств Минского, подкрепленная его авторитетом в ученых кругах, явилась одной из причин задержки развития нейроинтеллекта почти на два десятилетия. Однако ряд наиболее настойчивых ученых, таких как Кохонен, Гроссберг, Андерсон продолжили исследования, постепенно создавая теоретические основы для построения и применения искусственных нейронных сетей. Как выясн и- лось, Минский был слишком пессимистичен в своих прогнозах и многие из задач, описанных им как не решаемые, сейчас решаются нейронными сетями с использованием стандартных процедур.

За последние десятилетия теория о нейроинтеллекте приобрела новое дыхание. Было предложено много интересных разработок, таких, например, как когнитон, способный с высокой достоверностью распознавать достаточно сложные образы (например, иероглифы) независимо от поворота и масштаба изображения. Автором когнитона является японский ученый К. Фукушима (К. Fukushima). В 1982 году американский биофизик Дж. Хопфилд (J. Hopfield) предложил интересную модель сети, получившей в будущем его имя. Позднее было разработано ряд эффективных алгоритмов: сеть встречного потока (R. Hecht-Neilsen), двунаправленная ассоциативная память (В. Kosko) и другие.

Люди называют себя Homo sapiens (человек разумный), поскольку для них мыслительные способности имеют очень важное значение. В течение тысяч лет человек пытается

122

понять, как он думает, т.е. разобраться в том, как именно ему, сравнительно небольшому материальному объекту, удается ощущать, понимать, предсказывать и управлять миром, намного более значительным по своим размерам и гораздо более сложным по сравнению с ним. В области искусственного интеллекта (ИИ) решается еще более ответственная задача: специалисты в этой области пытаются не только понять природу интеллекта, но и создать интеллектуальные су щ- ности. Искусственный интеллект — это одна из новейших областей науки Ученые других специальностей чаще всего указывают искусственный интеллект, наряду с молекулярной биологией, как «область, в которой я больше всего хотел бы работать». Студенты-физики вполне обоснованно считают, что все великие открытия в их области уже были сделаны Галилеем, Ньютоном, Эйнштейном и другими учеными. Искусственный интеллект, с другой стороны, все еще открывает возможности для проявления талантов нескольких настоящих Эйнштейнов.

В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

3.2. Структурные элементы нервной системы

3.2.1. Нейрон

Нейрон (от греч. neuron - жила, нерв), нервная клетка, нейроцит, основная функциональная единица нервной системы, обладающая специфическими проявлениями возбудимости (рис.27). Способен принимать сигналы, перерабатывать

123

Рис. 27. Нейрон и его компоненты

их в нервные импульсы и проводить к нервным окончаниям, контактирующим с другими нейронами или эффекторными органами (мышцы, железы). Образуется в эмбриогенезе из нейробласта на стадии нервной трубки. Главная, структурная особенность нейрона - наличие отростков (дендритов и аксона), которые отходят от тела клетки, или перикариона. Воспринимающая часть нейрона - ветвящиеся дендриты, снабжённые рецепторной мембраной. В результате суммации местных процессов возбуждения и торможения в наиб, высоковозбудимой (триггерной) зоне нейрона возникают нервные импульсы. Они распространяются по аксону к концевым нервным окончаниям, высвобождающим медиатор, который приводит к активации мембраны воспринимающих импульсы нервных клеток. Нейроны разнообразны по форме тела (пирамидные, многоугольные, круглые и овальные), его размерам (от 5 мкм до 150 мкм) и количеству отростков, униниполярные нейроны (имеют 1 отросток - аксон) характерны для ганглиев беспозвоночных, псевдоуниполярные (1 отросток, делящийся на 2 ветви) - для ганглиев (спинно- и черепномозговых нервов) высших позвоночных; униполярные (есть аксон и дендрит) - для периферия, чувствительных. Н.; мультиполярные

124

(аксон и несколько дендритов) - для мозга позвоночных. Если трудно дифференцировать отдельные, отростки би- и мультиполярных нейронов, то их называют, изополярными, если легко гетерополярными. беспозвоночных преобладают униполярные, у позвоночных - гетеро- и мультиполярные нейроны. Исходя из функций, нейроны подразделяют на чувствительные (сенсорные), воспринимающие сигналы из внешней

или внутренней среды, ассоциативные, связывающие нейроны друг с другом, и двигательные, или эффекторные| передающие первые импульсы от нейрона к исполнительным, органам. Последовательное синаптическое объединение чувствительного, ассоциативного и двигательного нейрона образует рефлекторную дугу. По характеру воздействия нейронов на клетки, с которыми они контактируют посредством синапсов, различают возбуждающие и тормозные нейроны, по типу выделяемого медиатора -холинергические, пептидергические, норадренергические и др. Нейросекреторные нейроны вырабатывают и выделяют нейрогормоны. ля всех нейронов характерен высокий уровень обмена веществ, особенно синтеза белков и РНК. Интенсивный белковый синтез необходим для обновления структурных и метаболических белков цитоплазмы нейронов, и его отростков. В филогенезе число нейронов, нарастает, достигая у человека многих млрд. У большинства животных дифференцированные нейроны не делятся. Как в онтогенезе, так и в филогенезе происходят постоянные количественные, и качественные, перестройки межнейронных связей. Человеческий мозг может рассматриваться, как гигантский биокомпьютер, в несколько тысяч раз более сложный, чем любая вычислительная машина, сконструированная человеком из небиологических элементов. Число нейронов человеческого мозга оценивается приблизительно в 13 миллиардов, причем число глиальных клеток еще раз в пять больше. Все части этого компьютера непрерывно работают, совершая миллионы вычислений параллельно и последовательно. Он имеет около двух миллионов визуальных входов и около ста тысяч акустических. Трудно сравнивать работу столь грандиозного компьютера с любым искусственным, существующим сегодня,

125

в связи с его весьма совершенным и сложным устройством. Нейроны — специализированные клетки, способные при-

нимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов.

Основная роль в реализации процесса возбуждения, т.е. способности генерировать электрические разряды принадлежит мембране, которая отделяет цитоплазму клетки от окружающей среды

Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.

До конца XIX века существовала ретикулярная, или фибриллярная, теория организации нервной ткани, согласно которой она состоит не из клеток, а из истинного синцития. В 1891 году немецкий анатом В. Вальдейср выдвинул альтернативу этой теории и сформулировал нейронную теорию: нерв-

ная ткань состоит не из синцития, а из отдельных, дискрет-

ных нейронов.В разработке нейронной теории есть заслуга многих ученых-гистологов и анатомов. В частности, ряд интересных взглядов, не укладывающихся в теорию фибриллярного строения нервной ткани и противоречивших ей, был высказан в работах В. Гиса-старшсго и О. Фореля. Однако главная заслуга в создании нейронной теории принадлежит испанскому нейрогистологу, лауреату Нобелевской премии (1906) С. Рамону-и- Кахалу. Ему оппонировал другой знаменитый гистолог — итальянский ученый К. Гольджи. Несмотря на заблуждения К. Гольджи, отстаивавшего фибриллярную теорию, его вклад в развитие учения о нервной ткани был настолько велик, а противостояние сторонникам нейронной теории столь плодотворно, что совместно с С. Рамоном-и-Кахалем ему была присуж-

126

дена Нобелевская премия. Оставался, однако, неясным вопрос механизмов коммуникации нейронов. Этот вопрос был разрешен работами английского физиолога У. Шерингтона, который ввел гипотетическое понятие "синапс" как место соединения двух клеток. Спустя четверть века теория синапса стала общепризнанной и окончательно утвердила нейронную теорию. В ее развитие большой вклад внесли также русские и советские гистологи: А.С. Догель (А.С. Догель не во всем принимал нейронную теорию, в частности, придерживался взглядов о фибриллярном строении сетчатки, но тем не менее его труды сыграли важную роль в утверждении нейронной теории), Б.И. Лаврентьев, А.А. Заварзин, Б.С. Дойников, Н.Г. Колосов, Г.И. Поляков и др.

Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные, более или менее сложные, комплексы.

Основные положения нейронной теории

1.Структурно-функциональной, медиаторной и метаболической единицей нервной ткани и нервной системы является нейрон.

2.Нейрон — клетка, состоящая из перикариона, аксона, дендритов и их терминальных ветвлений.

3.Функционирование нейронов возможно только при тесной интеграции их с различными видами нейроглии.

4.Нейроны взаимодействуют друг с другом при помощи синапсов — специализированных межклеточных контактов.

5.Совокупность нейронов, связанных синансами, формируют рефлекторные дуги — основной субстрат нервной системы.

5.Возбуждение в синапсах и в рефлекторных дугах передается только в одном направлении

Клиническая практика со своей стороны дает многочисленные доказательства в пользу основных положений нейронной теории. Болезненные процессы анатомически очень часто ограничиваются пределами одного нейрона - центрального или периферического, оставляя нетронутым другой нейрон, физиологически связанный с пострадавшим.

127

Современные исследования внесли в нейронную теорию важные дополнения. Особенно много интересного дали работы, раскрывающие физиологическую роль синапсов.

3.2.2. Строение и функции клеточных мембран.

Современными методами электронной микроскопии была определена толщина клеточных мембран (6—12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостномозаичная модель (рис. 28).

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

Рис. 28. Строение клеточной мембраны.

1 – цитоплазма, 2 – липидный бислой, 3 – гликопротеин, 4 – гликолипид, 5 – протеин.

128

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мембран возможны значительные различия.

Мембраны имеют ряд функций.

1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение нейромедиаторов в синаптических окончаниях.

Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих кана-

лов (их называют еще насосными каналами или ионным насо-

сом), постоянно потребляющих энергию, в клетке создается

129

разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая -примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки за-

ряжается отрицательно на величину около 70мВ относитель-

но внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли - проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка - 70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи, с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.

Нейрон в отличие от других клеток способен возбуж-

даться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия (рис.29). Основная роль в возбуж-

дении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов - натрия и калия - имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.

130

Рис. 29. Схема событий при возбуждении нейрона

В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка-70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается (рис. 2.6). Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется потенциалзависимым. Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту. Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т. е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал -70 мВ, тогда абсолютная амплитуда потенциала составит