Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОЭМ11.docx
Скачиваний:
42
Добавлен:
06.11.2017
Размер:
656.03 Кб
Скачать

1) Какие различают схемы возбуждения двигателей постоянного тока? Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

 При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

 

 

 При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

Рисунок 4 — схема смешанного возбуждения машины постоянного тока

 

 

 Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

2) Записать уравнения равновесия ЭДС двигателя при, объяснить их физический смысл. При работе генератора постоянного тока в его якорной обмотке индуктируется ЭДС Еа. При подключении к генератору нагрузки rн (рис.1) в цепи якоря появляется ток Ia и на зажимах устанавливается напряжение U.

Рис.1

Уравнение равновесия ЭДС по второму закону Кирхгофа для цепи якоря генератора записывается в виде

где Ia – ток в обмотке якоря; — сумма сопротивлений участков цепи якоря.

В общем случае

где ra, rд, rс, rк — сопротивления обмоток якоря, добавочных полюсов, последовательной обмотки возбуждения и компенсационной обмотки.

Поскольку Ea=cenФ, то уравнение электрического равновесия генератора записывается в виде

Умножив обе части выражения  на ток Ia, получим уравнение мощности генератора

где UIa= P2 – полезная мощность, отдаваемая генератором подключенным потребителям; EaIa=Pэм– электромагнитная мощность генератора;   - потери в цепи якоря.

Из первого выражения  следует, что ЭДС генератора Eа имеет две составляющие: одна U выводится на зажимы генератора и действует на подключенную нагрузку, а другая преодолевает омическое сопротивление цепи якоря и называется падением напряжения в якоре генератора. Если все члены уравнения мощности генератора разделить на угловую скорость вращения Ω, то получим уравнение вращающих моментов для установившегося режима работы

где

 — вращающий момент первичного двигателя;

— электромагнитный момент генератора;

— момент холостого хода, соответствующий потерям на трение, потерям в стали и добавочным потерям.

В неустановившихся режимах, когда частота вращения изменяется, возникает также динамический (вращающий) момент

где  — момент инерции вращающихся частей генератора.

Динамический момент соответствует кинетической энергии вращающихся масс. При изменении частоты вращения генераторного агрегата от установившихся значений в сторону увеличения динамический момент оказывает тормозящее действие, т.е. действует согласно с  , а при изменении частоты вращения в сторону уменьшения, момент   оказывает ускоряющее действие, т.е. совпадает с  первичного двигателя. Следовательно, в общем случае при n≠const урав­нение моментов будет иметь вид

Уравнение электрического равновесия генератора дает возможность установить зависимость между любыми электрическими величинами в генераторе, т.е. определить характеристики машины.  Основными величинами, определяющими режимы работы гене­раторов, являются: U, Iа, Iв, n. Генераторы чаще всего работают с постоянной частотой вращения, поэтому основные характеристики снимаются при n=const. 3) Записать уравнения равновесия моментов двигателя и объяснить их физический смысл.

4) Объяснить работу двигателя постоянного тока на примере энергетической диаграммы.

2.9. Энергетические диаграммы активной и реактивной мощностей асинхронной машины

Энергетическая диаграмма активной мощности асинхронного двигателя (рис.2.10) может быть представлена в следующем виде.

Рис. 2.10

Двигатель потребляет из сети активную мощность .

Часть этой мощности теряется в виде электрических потерь в активном сопротивлении обмотки статора , другая часть теряется в виде магнитных потерь в сердечнике статора .

Оставшаяся часть активной мощности представляет собой электромагнитную мощность , передаваемую магнитным полем со статора на ротор

.

Часть электромагнитной мощности теряется в виде электрических потерь в активном сопротивлении обмотки ротора

.

Остальная часть электромагнитной мощности превращается в механическую мощность, развиваемую на роторе

.

Часть механической мощности  теряется внутри самой машины в виде механических потерь  (на вентиляцию, на трение в подшипниках и на щетках машин с фазным ротором, если эти щетки при работе не поднимаются) и добавочных потерь (от высших гармоник МДС обмоток и от зубчатости статора и ротора).

Полезная механическая мощность на валу.

Сумма потерь в двигателе

.

КПД двигателя .

Необходимо назвать еще следующие важные соотношения: , из которых следует, что для уменьшения  и повышения КПД требуется, чтобы скольжение s двигателя было малым.

5) Какие различают характеристики двигателей постоянного тока последовательного, параллельного и смешанного возбуждения? объяснить их характер.

16.Характеристики двигателя последовательного возбуждения.

В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство Iв=Ia=I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f (Ia). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1 — Схема электродвигателя последовательного возбуждения.

Скоростная характеристика представляет зависимость n=f (Ia) при U=Uн. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между Ia и Ф. Приняв допущение Ф=кIa, запишем аналитическую зависимость скоростной характеристики в виде

.

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока Ia магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины Σr.

Рис. 2 — Скоростные характеристики двигателя последовательного возбуждения.

Моментная характеристика — это зависимость M=f (Ia) при U=Uн. Если предположить, что магнитная цепь не насыщена, то Ф=кIa и, следовательно, имеем

М=смIaФ=смкIa2

Это уравнение квадратичной параболы.

Кривая моментной характеристики изображена на рисунке 3.8. По мере увеличения тока Ia магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная характеристика двигателя последовательного возбуждения.

Механическая характеристика представляет собой зависимость n=f (M) при U=Uн. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря Ia. Тогда можно записать

.

Решая совместно уравнением, получаем

.

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения.

15.Характеристики двигателя параллельного возбуждения.

Электродвигателем параллельного возбуждения называется двигатель постоянного тока, обмотка возбуждения которого включена параллельно обмотке якоря (рис. 1). При снятии характеристик к цепи якоря подводится номинальное напряжение Uн=const.

Рис. 1 — Схема двигателя параллельного возбуждения.

Ток, потребляемый двигателем из сети, определяется суммой I=Ia+Iв, ток возбуждения обычно равен Iв=(0,03...0,04) Iн. Все характеристики двигателя снимаются при постоянных сопротивлениях в цепях возбуждения rв=const и якоря

Σr = const.

Скоростная характеристика.

Зависимость n=f (Ia) при Uн=const и Iв=const

Из уравнения ЭДС для электродвигателя

Имеем

.

Рис. 2 — Характеристики двигателя параллельного возбуждения.

Моментная характеристика – это зависимость М=f (Ia) при rв=const, U=Uн и Σr=const. В установившемся режиме работы двигателя согласно

.

имеем Mэм = M2+M0 = смIaФ. Если бы в процессе работы машины поток Ф не изменялся, то моментная характеристика представляла бы собой прямую (характеристика 4, рисунок 2). В действительности поток Ф с ростом тока Ia несколько уменьшается из-за размагничивающего действия реакции якоря, поэтому моментная характеристика слегка наклонена вниз (кривая 5). Характеристика полезного момента располагается ниже кривой электромагнитного момента на величину момента холостого хода (кривая 6).

Характеристика КПД η=f (Ia) снимается при U=Uн, rв=const, Σr=const и имеет типичный для электродвигателей вид (характеристика 7 на рис. 2). КПД быстро растет при увеличении нагрузки от холостого хода до 0,25Рн , достигает максимального значения при Р=(0,5...0,75) Рн, а затем до Р=Рн остается почти неизменным. Обычно в двигателях малой мощности η=0,75...0,85, а в двигателях средней и большой мощности η=0,85...0,94.

Механическая характеристика представляет зависимость n=f (M) при U=Uн, Iв=const и Σr=const. Аналитическое выражение для механической характеристики можно получить из уравнения ЭДС электродвигателя

.

Определив ток Iа из выражения М = сеIaФ и подставив это значение тока в выражение выше, получим

.

Рис. 3 — Механические характеристики двигателя параллельного возбуждения.

Следует помнить, что при обрыве цепи возбуждения Iв=0 обороты двигателя n→∞, т.е. двигатель идет «вразнос», поэтому его необходимо немедленно отключить от сети.

17.Характеристики двигателя смешанного возбуждения.

Принципиальная схема электродвигателя смешанного возбуждения приведена на рис. 1. В этом двигателе имеются две обмотки возбуждения – параллельная (шунтовая, ШО), подключенная параллельно цепи якоря, и последовательная (сериесная,СО), подключенная последовательно цепи якоря. Эти обмотки по магнитному потоку могут быть включены согласно или встречно.

Рис. 1 — Схема электродвигателя смешанного возбуждения.

При согласном включении обмоток возбуждения их МДС складываются и результирующий поток Ф примерно равен сумме потоков, создаваемых обеими обмотками. При встречном включении результирующий поток равен разности потоков параллельной и последовательной обмоток. В соответствии с этим, свойства и характеристики электродвигателя смешанного возбуждения зависят от способа включения обмоток и от соотношения их МДС.

Скоростная характеристика n=f (Ia) при U=Uн и Iв=const (здесь Iв — ток в параллельной обмотке).

С увеличением нагрузки результирующий магнитный поток при согласном включении обмоток возрастает, но в меньшей степени, чем у двигателя последовательного возбуждения, поэтому скоростная характеристика в этом случае оказывается более мягкой, чем у двигателя параллельного возбуждения, но более жесткой, чем у двигателя последовательного возбуждения.

Соотношение между МДС обмоток может меняться в широких пределах. Двигатели со слабой последовательной обмоткой имеют слабо падающую скоростную характеристику (кривая 1, рис. 2).

Рис. 2 — Скоростные характеристики двигателя смешанного возбуждения.

Чем больше доля последовательной обмотки в создании МДС, тем ближе скоростная характеристика приближается к характеристике двигателя последовательного возбуждения. На рис.2 линия 3 изображает одну из промежуточных характеристик двигателя смешанного возбуждения и для сравнения дана характеристика двигателя последовательного возбуждения (кривая 2).

При встречном включении последовательной обмотки с увеличением нагрузки результирующий магнитный поток уменьшается, что приводит к увеличению скорости двигателя (кривая 4). При такой скоростной характеристике работа двигателя может оказаться неустойчивой, т.к. поток последовательной обмотки может значительно уменьшить результирующий магнитный поток. Поэтому двигатели со встречным включением обмоток не применяются.

Механическая характеристика n=f (М) при U=Uн и Iв=const. двигателя смешанного возбуждения показана на рис.3 (линия 2).

Рис. 3 — Механические характеристики двигателя смешанного возбуждения.

Она располагается между механическими характеристиками двигателей параллельного (кривая 1) и последовательного (кривая 3) возбуждения. Подбирая соответствующим образом МДС обеих обмоток, можно получить электродвигатель с характеристикой, близкой к характеристике двигателя параллельного или последовательного возбуждения.______

Соседние файлы в предмете Электрические машины