Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / 2 семестр / ЭКЗАМЕНЫ / Методы ДИ. Шпоры.docx
Скачиваний:
239
Добавлен:
22.07.2018
Размер:
12.72 Mб
Скачать
  1. Понятие о дистанционных методах в геоэкологических исследованиях. Методы дистанционного зондирования. Космическое дистанционное зондирование. Применение данных дистанционного зондирования для решения научных и прикладных задач. Методы дистанционного зондирования: активные, пассивные.

Дистанционные зондирование можно представить как процесс, посредством которого собирается информация об объекте, территории или явлении без непосредственного контакта с ней. Методы дистанционного зондирования основаны на регистрации в аналоговой или цифровой форме отраженного или собственного электромагнитного излучения участком поверхности в широком спектральном диапазоне.

С помощью данных ДЗЗ решаются многие важные научные задачи экономического, социального и экологического развития как отдельных регионов, так и страны в целом. В настоящее время данные ДЗЗ широко используются:

- при решении задач в интересах сельского, лесного и рыбного хозяйства;

- поиске, инвентаризации и освоении природных ресурсов;

- обеспечении судоходства и транспортировки грузов, прокладке и контроле состояния различных коммуникаций;

- контроле чрезвычайных ситуаций и оценке экологической обстановки;

- охране природы;

- прогнозировании погоды;

- оценке глобальных изменений и эволюции климата;

- создании и ведении территориальных информационных систем и др.

Методы ДЗЗ:

  • пассивные, т.е. использовать естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной радиацией,

  • активные - использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия.

Данные ДЗЗ, полученные с датчиков космического базирования, характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на космических аппаратах устанавливаются многоканальные датчики пассивного и активного типов, регистрирующие электромагнитное излучение в спектральных диапазонах, расположенных в "окнах прозрачности" земной атмосферы.

Оперативное дистанционное зондирование Земли методами аэро- и космической съёмки в кратчайшие сроки даёт людям информацию об изменении поверхности. Информация такого рода на большие территории служит для мониторинга как географических, так и техногенных процессов, анализ которых приносит значительную эффективность при управлении сферами человеческой жизнедеятельности.

  1. Дешифрирование аэрофотоматериалов. Виды дешифрирования: общее и специфическое дешифрирование; упрощенное, схематическое, детальное; морфографическое, морфометрическое, инструментальное; полевое, камеральное.

Под дешифрированием аэрофотоматериалов понимается «определение и характеристика по снимкам категорий земной поверхности, явлений и объектов, как слагающих ее, так и находящихся на ней» (Гавеман, 1939). Более развернутое определение понятия дешифрирования дается Г.В. Господиновым (1957). «Под дешифрированием аэрофотоснимков следует понимать процесс распознавания предметов и контуров местности по их фотографическим изображениям, их, качественная и количественная характеристика, установление взаимосвязей между ними, а также выявление особенностей географического размещения и изучение явлений и процессов, происходящих на местности». И.А. Лабутина рассматривает «дешифрирование – как метод изучения и исследования объектов, явлений и процессов на земной поверхности, который заключается в распознавании объектов по их признакам, определении характеристик, установлении взаимосвязей с другими объектами».

Дешифрирование аэрофотоснимков для составления топографических карт относится к общему дешифрированию. (Общее (комплексное) дешифрирование является сплошным, параметры снимков должны быть усредненными, опознаются объекты доступные непосредственному наблюдению и измерению. Комплексное дешифрирование в свою очередь делится на Ландшафтное и Топографическое. Первое выполняется для исследования ландшафтов земной поверхности. Второе выявляет и распознает на снимках топографические объекты, являющиеся содержанием топографических карт.)

Дешифрирование аэрофотоснимков с целью исследования почвенных, геоботанических, геологических и т. д. объектов относится к специальному дешифрированию. (Отраслевое дешифрирование избирательное. По снимкам изучается отдельное явление или группа конкретных объектов, их характеристики и взаимосвязи. В зависимости от области применения дешифрирование может быть: Геологическое, сельскохозяйственное, лесное, археологическое, гидрографическое, социально-экономическое и т. д.)

В зависимости от поставленных задач дешифрирование может быть упрощенным, схематическим и детальным.

В зависимости от способов дешифрирования оно подразделяется на:

1) морфографическое дешифрирование, состоящее из визуального рассматривания, определения и характеристики исследуемых по аэрофотоснимкам объектов;

2) морфометрическое дешифрирование, слагающееся из различного вида измерительных исследований содержания аэрофотоснимков (Викторов, 1947);

3) инструментальное дешифрирование, состоящее из фотометрических исследований аэронегативов.

При производственном исследовании почвенного покрова аэрофотрграфическим методом пользуются только двумя первыми способами дешифрирования в связи с недостаточной разработкой метода.

По месту своего проведения дешифрирование подразделяется на полевое и камеральное. При полевом дешифрировании, аэрофотоснимок ориентируется на ме­стности, объекты на аэроснимке сличаются с объектами на местности, опознаются и характеризуются путем изучения их на местности и на снимке. При камеральном дешифрировании опознавание и характеристика наземных объектов произво­дится на основании изучения дешифровочных показателей их на аэрофотоснимках.

  1. Аэрокосмические методы, их сущность и разновидности. Принципиальная схема аэрокосмических исследований. Объект исследования в аэрокосмических методах. Многоярусный принцип исследования Земли. Носители съемочной аппаратуры.

Аэрокосмические методы позволяют решать в геоэкологии такие общие задачи, как инвентаризация различного рода территориальных систем, оценка их состояния и возможностей использования, изучение динамики, геоэкологическое прогнозирование. На рис. 1 в обобщенном виде представлена принципиальная схема выполнения аэрокосмических геоэкологических исследований. Необходимым элементом исследований по снимкам является оценка достоверности и точности полученных результатов. Для этого приходится привлекать другую информацию и обрабатывать ее иными методами, что требует дополнительных затрат.

Рис. 1 Принципиальная схема аэрокосмических исследований, показывающая основные технологические этапы и конечную цель

Объектом исследования съемки могут выступать — участки территории, местности, так и объекты изучения, исследования — определенные типы поверхности, явления на местности или протекающими на ней процессам. С точки зрения аэрокосмических методов объект изучения целесообразно рассматривать как пространственно-временную категорию иерархического строения: мелкие объекты включены в более крупные, кратковременные процессы – в долговременные. Важнейшая характеристика объектов съемки, освещение которых закономерно меняется в течение дня, – их отражательно-излучательная способность. Аэрокосмические методы позволяют прямо или косвенно получать только ту географическую информацию о местности, которая заложена в особенностях излучения, идущего от объекта съемки.

Аэрокосмические снимки — основной результат аэрокосмических съемок, для выполнения которых используют разнообразные авиационные и космические носители.

Рис. 2. Носители съемочной аппаратуры

Рисунок иллюстрирует также многоярусный принцип исследования Земли, предусматривающий космические, авиационные и наземные (надводные) наблюдения.

При аэрокосмических методах исследования информация об удаленном объекте (местности) передается с помощью электромагнитного излучения, которое характеризуется параметрами:

- интенсивность,

- спектральный состав,

- поляризация,

- направление распространения.

Зарегистрированные физические параметры излучения, функционально зависящие от биогеофизических характеристик, свойств, состояния и пространственного положения объекта исследования, позволяют изучать его косвенно. В этом заключается сущность аэрокосмических методов.

Аэрокосмические съемки выполняются с помощью специальной съемочной аппаратуры, чаще всего — фотографических камер, сканеров и радиолокаторов, которые иногда объединяют общим названием сенсоры (от англ. sensor — чувствительный элемент).

Съемочная аппаратура, позволяющая одновременно получать снимки в нескольких спектральных зонах, называется многозональной, а в десятках и сотнях очень узких спектральных зон — гиперспектральной.

Принцип множественности, или комплексности, аэрокосмических исследований предусматривает использование не одного снимка, а их серий, различающихся по масштабу, обзорности и разрешению, ракурсу и времени съемки, спектральному диапазону и поляризации регистрируемого излучения.

  1. Космические системы изучения природных ресурсов и мониторинга окружающей среды. Свойства аэрокосмических снимков как информационных моделей местности (изобразительные, радиометрические, геометрические), их характеристика.

Космические методы базируются на длительной работе регулярно пополняемых группировок спутников — спутниковых систем, которые включают сложную инфраструктуру, обеспечивающую функционирование космических аппаратов на орбите (центры управления полетом и съемкой), прием информации (наземные пункты приема, спутники-ретрансляторы), ее хранение и распространение (центры первичной обработки, архивы снимков).

Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

Важными показателями снимка служат охват и разрешение. Обычно для географических исследований требуются снимки большого охвата и высокого разрешения. Однако удовлетворить эти противоречивые требования в одном снимке не удается. Обычно чем больше охват получаемых снимков, тем ниже их разрешение. Поэтому при разработке съемочной аппаратуры приходится идти на компромиссные решения либо выполнять одновременно съемку несколькими системами с различными параметрами.

  1. Методы получения информации по снимкам: дешифрирование и фотограмметрическая обработка. Эталонирование снимков. Аэрокосмическое картографирование, моделирование и прогнозирование.

Необходимая для геоэкологических исследований информация (предметно-содержательная и геометрическая) извлекается из снимков двумя основными методами: дешифрированием и фотограмметрической обработкой. Оба метода используют как традиционные технологии, основанные на визуальной обработке аналоговых снимков, так и компьютерные, которые автоматизируют эти процессы при работе с цифровыми снимками.

Дешифрирование позволяет получать предметную, тематическую (в основном качественную) информацию об изучаемом объекте или процессе, его связях с окружающими объектами. В визуальном дешифрировании обычно выделяют чтение снимков и их интерпретацию (толкование). Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня географической подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Фотограмметрическая обработка призвана дать ответ на вопрос, где находится изучаемый объект и каковы его геометрические характеристики – размер, форма. Она позволяет определять по снимкам плановое и пространственное положение объектов и их изменение во времени. Для фотограмметрических измерений снимков применяют специальные прецизионные оптико-механические приборы, а также компьютерные комплексы со специализированным программным обеспечением.

Эталонирование. Получить посредством дешифрирования (визуального или компьютерного) или фотограмметрической обработки необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно.

Например, для спектрометрических определений по многозональному снимку, на которых основано компьютерное дешифрирование, требуется выполнить радиометрическую калибровку снимков (их эталонирование), а для получения размера объекта по снимку фотограмметрическим способом необходима его геометрическая калибровка. Процедура получения и учета калибровочной информации составляет необходимый элемент технологической схемы аэрокосмических исследований. Эта информация обязательна для любой обработки снимков, хотя объем ее бывает различным; чем выше требуемая точность определений по снимкам, тем он значительнее. Принято различать абсолютную и относительную калибровку. При обработке одиночных снимков ограничиваются относительной калибровкой, а нескольких, например многозональных, желательна их абсолютная калибровка.

Аэрокосмическое картографирование. Итоговым звеном технологической схемы аэрокосмических геоэкологических исследований является изготовление по снимкам карт, от качества которых зависит не только их эстетическое восприятие, но и степень достоверности исследований. Многолетний опыт работ свидетельствует о том, что создание карт и ГИС – главнейшее направление практического и научного использования аэрокосмической информации. Результаты комплексных географических исследований, выполненных с использованием аэрокосмических снимков, представляют в виде серий взаимосогласованных тематических карт, отражающих пространственные закономерности, качественные и количественные характеристики изученной территории. Они составляют базовую основу интегрированных ГИС.

Моделирование и прогнозирование. Дальнейшие этапы включают определение количественных характеристик исследуемого явления, необходимых для математического моделирования с целью прогнозирования развития явления или процесса. Элементы этой схемы сейчас реализуются при прогнозировании талого стока рек, будущего урожая, а иногда и для экологического прогноза-предупреждения. Роль аэрокосмической информации при географическом прогнозировании будет возрастать.

  1. Схема дистанционного зондирования Земли. Процесс получения и анализа данных дистанционного зондирования.

Идеальная схема дистанционного зондирования показана на рис.2.

Ее составляющими являются источник электромагнитного излучения, процесс распространения излучения и его взаимодействие с веществом объекта, ответный сигнал, регистрация данных и предоставление их потребителям. В этой модели источник генерирует электромагнитное излучение с высоким уровнем энергии во всем диапазоне длин волн, причем интенсивность излучения является известной величиной, которая не зависит от длины волны. Излучение не взаимодействует с атмосферой и распространяется через нее без потери энергии. Падающее излучение взаимодействует с веществом объекта, в результате чего возникает отраженное либо собственное вторичное излучение, однородное во всем диапазоне длин волн.

Излучение от объекта попадает на сенсор, который регистрирует пространственную информацию. Идеальный сенсор должен иметь простую и компактную конструкцию и обладать высокой точностью. Кроме того, он должен почти не потреблять энергии для своей работы.

Данные, зарегистрированные сенсором, передаются на наземную станцию, где мгновенно преобразуются в интерпретируемую форму, которая позволяет идентифицировать все части изучаемого объекта по их физическим, химическим и биологическим свойствам.

Рис. 2 Идеальная схема дистанционного зондирования

В этом виде данные предоставляются потребителям, которые, тем не менее, должны обладать большим опытом использования материалов ДЗ в своих предметных областях.

Конечно, на практике идеальной системы дистанционного зондирования не существует в силу следующих причин:

1 .Ни один источник не способен обеспечить однородность потока излучения как в пространстве, так и во времени.

2. Из-за взаимодействия излучения с газами атмосферы, молекулами водяного пара и атмосферными частицами изменяется интенсивность излучения и его спектр.

3.Одно и то же вещество при разных условиях может иметь разную спектральную чувствительность. В то же время, спектральная чувствительность разных веществ может совпадать.

4.На практике не существует идеального сенсора, с помощью которого можно было бы регистрировать все длины волн электромагнитного спектра.

5.Из-за технических ограничений передача данных и их интерпретация иногда выполняются с задержкой по времени. Формат передаваемых данных также может отличаться от того, который требуется потребителю, и в результате потребитель получает данные в нужном формате лишь спустя некоторое время.

6.Потребители могут не обладать необходимой информацией о параметрах сбора данных ДЗ и не иметь достаточного опыта для их анализа и дешифрирования.

Дистанционное зондирование можно рассматривать как составную часть информационной системы. Во многих областях данные ДЗ являются ключевым компонентом в процессе принятия решений. Простая замкнутая схема такого процесса безобратных связей показана на рис.3.

Начальная точка, которая одновременно является и конечной точкой всего процесса, – информационные запросы групп специалистов. По существу, потребитель, а точнее, его нужды – это самое главное звено любой системы управления информацией. На схеме представлены различные дисциплины, связанные с Землей и ее ресурсами. Глобус на заднем плане символизирует глобальный масштаб такой системы. Информационные запросы логически связаны с требованиями заказчиков и потребителей продукции к материалам ДЗ.

Оптимальный способ использования данных наблюдения поверхности Земли со спутников заключается в том, чтобы анализировать их совместно с информацией из других источников, – в этом случае они становятся необходимой составляющей процесса принятия решений и моделирования в любой предметной области. Еще один важный принцип дистанционного зондирования – многокомпонентность – реализуется в виде различных методов съемки и анализа данных.

Рис. 3. Процесс получения и анализа данных дистанционного зондирования

  1. Виды аэрокосмических съемок: фотографическая, многозональная фотографическая, телевизионная, сканерная.

Аэрокосмические съемки, выполняемые при специально создаваемом искусственном освещении, называются активными, а при естественном (солнечном) – пассивными. К пассивным относят съемки, которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли, а к активным – регистрацию отраженного искусственного излучения.

Фотографическая съемка

Под фотографической съемкой понимают сложный технологический процесс, включающий работы от проведения фотографирования с летательных аппаратов до получения фотографических снимков.

Фотографическая съемка выполняется в видимом диапазоне спектра электромагнитных волн (0,4-0,9 мкм). При ее проведении обязательным условием является наличие на борту носителя аппаратуры фотографической системы.

Фотографическая съемка проводится с самолетов, пилотируемых кораблей и орбитальных станций, картографических спутников и т.д., кадровыми, панорамными и щелевыми фотокамерами, работающими в автоматическом, полуавтоматическом и ручном режиме.

Основной задачей фотографической съемки является повышение информативности изображений, что в свою очередь связано с увеличением разрешающей способности фотографий, выбором определенных спектральных зон, обеспечением высоких фотографических, фотометрических и фотограмметрических качеств. Решение данных вопросов требует использования на борту летательных аппаратов различных типов фотоаппаратов.

Материалы фотографической съемки обладают высокими геометрическими, изобразительными и информационными свойствами. Легкость зрительного восприятия изображения позволяет их использовать для визуального дешифрирования различных объектов. Материалы фотографической съемки широко используются для изучения природных явлений, составления тематических и топографических карт.

Многозональная фотографическая съемка

Фотографическое изображение объекта на аэрокосмическом снимке формируется в зависимости от его способности поглощать или отражать электромагнитные волны определенной длины.

Например, если наблюдать ель или березу через синий светофильтр, их яркость будет одинаковой, а через красный – кроны ели будут темнее, чем у березы. Еще больше различия между лиственными и хвойными породами в инфракрасных лучах. При наблюдении через красный светофильтр мутная и чистая вода будут иметь одинаковую спектральную яркость, а через сине-голубой – мутная вода выглядит значительно светлее.

Если получить снимки в различных зонах спектра, то на них можно распознать объекты и их свойства по различиям их спектральной яркости. Такой вид съемки получил название многозональной.

Сущность многозональной фотографической съемки заключается в том, что одна и та же территория или участок местности одновременно фотографируются в нескольких узких зонах электромагнитного спектра, при одних и тех же технических и погодных условиях съемки.

Телевизионная съемка

Телевизионная съемка ведется телевизионными камерами в оптическом диапазоне электромагнитного спектра (0,4-1,1 мкм). Сущность телевизионной съемки заключается в том, что оптическое изображение местности преобразуется в электрический видеосигнал. Телевизионные приемники относятся к оптико-электронным системам дистанционного зондирования.

Телевизионные камеры используются для глобальных съемок с геостационарных спутников. Телевизионная съемка для метеорологических целей проводится на спутниках «Метеор», «Ресурс-0», а также американских «Тайрос» и «Нимбус». Эти снимки используются для дешифрирования облачного покрова, составления карт облачности, которые используются для прогноза погоды. Также они используются для изучения снежного покрова в целях гидрологических прогнозов и анализа ледовой обстановки на морях.

Кроме метеорологических целей и исследования земной поверхности, телевизионная съемка используется при изучении планет Солнечной системы и их спутников.

Основные достоинства телевизионных съемок – оперативности (получение изображений в реальном или близком к реальному масштабу времени), технологичность в обработке, обеспечение быстрой и многократной повторности съемок одних и тех же территорий.

Сканерная съемка

Сканерная съемка, в отличие от фотографической и телевизионной, может выполняться от видимого диапазона до инфракрасного теплового с длиной волны в единицы и десятки микрометров. Для съемки используются оптико-механическое сканирующее устройство, которое состоит из вращающегося зеркала, устанавливаемого под углом 45° к направлению вращения, перпендикулярному к плоскости орбиты, и детекторов, чувствительных к излучению определенных длин волн.

Принцип работы оптико-механического сканирующего устройства заключается в следующем: сканирующий элемент (вращающееся зеркало), поэлементно просматривая местность поперек движения носителя (рис. 2), посылает лучистый поток в объектив и далее на точечный фотоприемник (детектор), который преобразует его в электрический сигнал, передаваемый с носителя по каналам связи на наземные приемные станции.

Отличительная особенность сканерных снимков состоит в том, что их изображение состоит из полос (сканов), которые в свою очередь состоят из отдельных элементов (пикселов).

Разрешающая способность изображений, получаемых сканирующими системами, и ширина охвата съемкой полосы зависят от угла сканирования (обзора) и мгновенного (элементарного) угла зрения. Угол сканирования и мгновенный угол зрения, а следовательно, охват съемкой и разрешение на местности – взаимосвязанные величины. Чем выше разрешение сканера, тем меньше охват съемкой местности.

  1. Инфракрасная и инфракрасная тепловая съемки. Основные направления использования ИК тепловой съемки.

Инфракрасная и инфракрасная тепловая съемки

Данные виды съемок выполняются с использованием инфракрасных сканирующих радиометров, однако различаются диапазоном спектра, в котором они проводятся.

  1. Аэрофотосъемка. Плановая и перспективная съемка. Маршрутная и площадная съемка. Поперечное и продольное перекрытие снимков. Рабочая площадь снимка.

Технические показатели аэрофотосъемки

При создании топографической основы фотограмметрическим методом используют снимки, полученные отечественными аэрофотоаппаратами типа АФА-ТЭ, АФА-ТЭС, а из зарубежных — LMK, RC-30 (Leica). В качестве основных носителей съемочной аппаратуры применяют самолеты: Ан-2, Ан-30, Ту-134СХ, Ил-20М.

В некоторых случаях съемку проводят с вертолетов, мотодельтапланов, управляемых по радио авиамоделей и воздушных шаров. Съемку выполняют в ясную солнечную погоду, при отсутствии облаков. Комплекс аэрофотосъемочных работ состоит из нескольких этапов:

  • разработки технического задания (проекта), включающего технические параметры съемки: границы участка съемки, высоту и масштаб фотографирования, фокусное расстояние АФА, продольное и поперечное перекрытие снимков, тип аэрофотопленки, сроки съемки и т. д. При использовании современных технических средств производства аэрофотосъемки, таких, как навигационная система GPS и компьютерная система управления полетом и работой аэрофотоаппарата типа ASCOD, разработка задания имеет свои особенности. Получают координаты проектируемых центров фотографирования, т. е. точек, в которых происходит открытие затвора АФА (экспонирование). Для этого на топографическую карту масштаба 1:100 000 наносят заданную границу участка (объекта) аэрофотосъемки. Затем с помощью дигитайзера опреде­ляют координаты поворотных точек границы участка съемки, ко­торые вводят в бортовой компьютер. В компьютер также вводят масштаб аэрофотосъемки, величину продольного и поперечного перекрытия, фокусное расстояние и формат снимков. По этим данным вычисляют координаты проектируемых центров фотографирования в системе координат WGS-84;

  • подготовки аэрофотосъемочного оборудования, полетного задания и т.п.

  • аэрофотографирования;

  • фотолабораторной обработки аэрофильмов (проявление, фиксирование, сушка, нумерация негативов, контактная печать аэроснимков);

  • составления накидного монтажа и изготовления его репродукции, оценки фотографического и фотограмметрического качества материалов аэрофотосъемки;

  • сдачи материалов аэрофотосъемки заказчику.

При аэрофотографировании масштаб получаемых снимков, по экономическим соображениям, мельче масштаба создаваемого плана. По масштабу фотографирования съемку разделяют на: крупномасштабную (1: М > 1:15 000), среднемасштабную (1:16 000 < 1 :М< 1:50 000), мелкомасштабную (1:М < 1:51 000) и сверхмелкомасштабную (1:М < 1:200 000).

Фотосъемку в зависимости от угла отклонения оптической оси объектива АФА от вертикали, как было рассмотрено ранее, делят на плановую и перспективную.

Плановой называют аэрофотосъемку, выполняемую при верти­кальном положении оптической оси, при этом угол отклонения допускается до 3°.

Использование гиростабилизирующих аэрофотоустановок при фотографировании местности позволяет получить снимки с углом наклона 7... 10 мин (предельное значение утла 40 мин). При создании планов и карт крупного масштаба применяют снимки, полу­ченные в результате проведения плановой аэрофотосъемки.

При перспективной съемке угол отклонения оптической оси от вертикали может достигать 45°. Ее выполняют для увеличения зоны захвата снимаемой местности при обзорных или рекогнос­цировочных работах.

При планово-перспективной съемке используют несколько аэрофотоаппаратов одновременно — одним АФА проводят плановую съемку, другими перспективную. Это позволяет фотографировать полосу местности до горизонта.

По количеству и расположению снимков различают однокадровую (одинарную), маршрутную и многомаршрутную (площадную) аэрофотосъемку.

При однокадровой фотосъемке получают одиночные снимки участков земной поверхности.

При маршрутной фотосъемке изображение полосы местности представляется в виде некоторого количества снимков, получен­ных по направлению (маршруту) полета летательного аппарата. Маршрут полета может быть прямолинейным, криволинейным или ломаным. Это зависит от вида фотографируемого объекта и целей съемки. Например, при обследовании или проектировании линейных объектов (дорог, трубопроводов, линий электропередачи, каналов и т. п.) съемку проводят по криволинейным или лома­ным маршрутам.

Многомаршрутная (площадная) фотосъемка представляет собой получение снимков местности с нескольких параллельных марш­рутов (рис.3). Маршруты прокладываются чаще всего по на­правлениям восток—запад—восток или север—юг—север. Пло­щадную аэрофотосъемку применяют при картографировании или обследовании больших территорий.

Перекрытиями называют части аэроснимков, на которых изображена одна и та же местность. Значения перекрытий выражают в процентах от длины стороны снимков.

Взаимное перекрытие снимков одного маршрута — это продольное перекрытие, рассчитываемое по формуле

,

где — размер перекрывающихся частей снимка; — длина стороны снимка по направлению маршрута.

Продольное перекрытие снимков рассчитывают или задают, исходя из технологии фотограмметрической обработки снимков (или иных соображений). Величина его может быть 60, 70, 80, 90 %. Перекрытие двух смежных снимков называют двойным (на рис. 3 обозначено цифрой 1). Зона перекрытия трех снимков — тройное перекрытие (на рис. 3 обозначено цифрой 2) и т. д. Для каждого стандартного значения продольного перекрытия определяют минимальные и максимальные пределы.

Продольное перекрытие обеспечивается частотой (временным интервалом) включения АФА, которое зависит от высоты фотографирования и путевой скорости летательного аппарата. Расстояние между соседними точками фотографирования в маршруте на­зывают базисом фотографирования и обозначают Вх.

Поперечное перекрытие ру — это перекрытие снимков соседних маршрутов. Поперечное перекрытие рассчитывают по формуле

где — размер перекрывающейся части снимков двух смежных маршрутов.

Минимальное поперечное перекрытие допускается 20 %. Рас­стояние между маршрутами (1) рассчитывают по формуле

,

где - длина поперечной стороны снимка;т — знаменатель масштаба аэрофо­тосъемки; ру - заданное поперечное перекрытие.

Продольные и поперечные перекрытия позволяют определить центральную часть снимка, где его геометрические и фотометрические искажения минимальны. Эту часть снимка называют рабо­чей площадью снимка. Рабочую площадь снимка, ограниченную линиями, проходящими через середины двойных продольных и поперечных перекрытий, называ­ют теоретической (рис.4).

Размеры ее сторон bх и bу по со­ответственным осям х и у рассчи­тывают по формулам:

,

,

Рис. 4. Рабочая площадь снимка

Теоретическую рабочую площадь используют при расчетах, а практическую — при выполнении фотограмметрических работ.

  1. Оценка качества результатов аэрофотосъемки. Этапы заказа аэрофотосъемки. Оценка качества материалов съемки. Фотографическое и фотограмметрическое качество съемки. Материалы результатов аэрофотосъемки, передаваемые заказчику.

Оценка качества результатов аэрофотосъемки

Аэрофотосъемочные работы выполняют как государственные предприятия (аэрофотосъемочные отряды), так и различные фирмы, имеющие лицензии на производство аэрофотосъемки. Заказчиком может быть любая организация, у которой есть разрешительные документы на работу с материалами аэрофотосъемки.

Порядок заказа аэрофотосъемки состоит из следующих основных этапов:

  • организация-заказчик направляет письменное предложение фирме-исполнителю, в котором указывает местоположение участка снимаемой местности (на мелкомасштабной карте наносят границы объекта съемки, его площадь, сроки съемки, тип АФА и т. п.);

  • заказчик составляет и согласует с исполнителем техническое задание на выполнение аэрофотосъемки, если фирма-исполнитель имеет возможности выполнить этот вид работ. В задании отмечают технические параметры съемки: назначение съемки, высота фотографирования, фокусное расстояние АФА, съемочный масштаб, тип аэрофотоаппарата, тип аэрофотопленки и светофильтра, использование специальной аппаратуры, сопровождающей аэрофотосъемку (радиовысотомеров, приборов GPS или иных), тип летательного аппарата. Указывают условия проведения аэрофотосъемки: примерные сроки, высоту солнца. Подтверждают площади и местоположение участка;

  • в соответствии с техническим заданием исполнитель определяет стоимость комплекса аэрофотосъемочных работ, которую согласуют с заказчиком;

  • между заказчиком и исполнителем заключается договор на выполнение аэрофотосъемки.

После выполнения аэросъемочных работ оценивают качество материалов аэрофотосъемки.

Оценку качества материалов съемки выполняют с целью выявления соответствия реально получаемых результатов требованиям технического задания и существующим нормативам, значения которых определены инструкциями и наставлениями по производству аэрофотосъемок. Оценивают фотографическое качество аэрофотоснимков и фотограмметрическое качество материалов аэрофотосъемки.

Фотографическое качество зависит от состояния атмосферы, освещения объекта съемки, технических условий проведения аэрофотографирования, фотохимической обработки. При визуальной оценке на аэрофотонегативах не должно быть обнаружено механических повреждений, изображений облаков, теней от них, бликов, ореолов. Изображение на снимках должно быть резким, с хорошей проработкой деталей в светлых и темных участках. Оптическая плотность (тон) и контрастность должны соответствовать нормативам. При визуальном способе для сравнения можно использовать снимки-эталоны, т. е. снимки, фотографическое качество которых оценено высококвалифицированными специалистами-экспертами. Применение приборов позволяет более точно и объективно оценить фотографическое качество аэрофотоизображений.

Фотограмметрическое качество материалов аэрофотосъемки оценивают по следующим критериям.

1. Определение продольных и поперечных перекрытий. Величину перекрытий определяют с помощью специальной линейки, позволяющей измерять перекрытия в процентах. Если аэрофотосъемка выполнена с продольным перекрытием 60 или 80%, то минимальное значение перекрытия допускается соответственно 56 и 78 %. Минимальное поперечное перекрытие допускается 20 %. Обычно определение перекрытий выполняют по накидному монтажу.

Накидным монтажом называют временное соединение контактных снимков, осуществляемое совмещением (наложением) их перекрывающихся частей. В результате получают непрерывное фотографическое изображение снятой территории.

Снимки укладывают и закрепляют на специальных деревянных щитах, иногда покрытых пробковым слоем. При 80 % перекрытия снимки укладывают через один, при 90 % — через два. Независимо от величины продольного перекрытия обязательно используют крайние снимки маршрутов. Укладывают снимки так, чтобы номера снимков были видны на накидном монтаже. Снимки разме­щают на щите так, чтобы их номера располагались горизонтально. Номер может быть в правом верхнем углу или на южной (нижней) стороне снимка.

Первый закрепленный снимок укладывают на второй из данного маршрута так, чтобы максимально точно совместить изображения их перекрывающихся частей. Совмещают изображения способом «мельканий». Суть этого способа заключается в том, что на предыдущий снимок укладывают последующий так, чтобы изображения их перекрывающихся частей примерно совпали. Затем верхний снимок многократно в быстром темпе отгибают и прижимают к нижнему. При неточном совмещении снимков наблюдаемые изображения объекта будут перемещаться. Возникает эффект мультипликации. Для устранения перемещения положение верхнего снимка уточняют, сдвигая в нужном направлении. После закрепления второго снимка аналогично укладывают остальные снимки маршрута. Снимки второго и последующих маршрутов укладывают также способом «мельканий», добиваясь совмещения изображений как в зонах продольных, так и поперечных перекрытий. При 30%-м поперечном перекрытии монтируют все маршруты, при 60%-м — через маршрут. При значительной территории съемочного участка составляют несколько накидных монтажей, каждый из которых, как правило, покрывает четыре смежных трапеции.

После производства аэрофотосъемки заказчику сдают:

  • аэрофильмы (аэрофотонегативы) в неразрезанном виде, на катушках, упакованные в плотно закрытые металлические банки;

  • контактные отпечатки с аэронегативов;

  • негативы репродукций накидных монтажей;

  • репродукции накидных монтажей;

  • топографические карты с проектными и фактическими осями маршрутов аэрофотосъемки;

  • журналы регистрации аэронегативов и негативов репродукций накидных монтажей;

  • данные показаний радиовысотомера или приборов GPS; контрольные негативы прикладной рамки аэрофотоаппарата;

  • характеристики АФА: фокусное расстояние, значение дисторсии по осям и зонам, координаты главной точки, расстояние между координатными метками;

  • паспорт аэрофотосъемки и другие материалы и сведения, пре­дусмотренные договором.

  1. Космическая съемка. Условия получения космических снимков. Орбиты движения КЛА, используемые при космической съемке, их преимущества и недостатки. Космические съемочные системы.

Условия получения космических снимков

Условия получения космических снимков существенно влияют на их геометрические и изобразительные свойства. Это, в свою очередь, определяет методологию и технологию фотограмметрической обработки снимков и интерпретацию изображений.

Основные отличительные особенности получения космических снимков:

  • большая скорость и сложность траектории движения КЛА относительно земной поверхности;

  • значительная высота съемки (высота полета КЛА), исчисляемая сотнями и тысячами километров над земной поверхностью;

  • влияние всего слоя атмосферы на геометрическое и энергетическое искажение отраженного или собственного излучения объектами земной поверхности, поступающего на вход съемочных систем.

Рассмотрим условия получения космических снимков.

Космическую съемку поверхности Земли проводят с пилотируемых космических аппаратов, орбитальных станций и беспилотных искусственных спутников Земли. Съемку могут выполнять космонавты в так называемом ручном режиме или автоматически по заданной программе.

Движется КЛА по сложной траектории, называемой орбитой. При съемке поверхности Земли используют эллиптические, параболические и гиперболические орбиты.

При движении КЛА по эллиптической орбите Земля находится в одном из фокусов эллипса. Точка орбиты, расположенная ближе к центру Земли, называется перицентром (перигеем), а наиболее удаленная — апоцентром (апогеем).

Параболические или гиперболические орбиты соответствуют траектории движения КЛА по параболе или гиперболе.

При съемке Земли или иных планет возможны варианты получения изображения: при подлете, отлете или при прохождении мимо планеты КЛА.

Существенный недостаток съемок с КЛА, находящихся на пе­речисленных орбитах, — изменение удаленности съемочной системы от снимаемой поверхности. Пропорционально изменению высоты съемки изменяется масштаб получаемых снимков.

Съемку можно выполнять со спутников Земли, находящихся на геостационарных орбитах. При этом варианте съемки положение спутника относительно поверхности не изменяется, так как его угловая скорость движения равна угловой скорости движения земной поверхности. При съемке с геостационарных спутников получают информацию об одной территории практически в любое время. Результаты съемки можно использовать для мониторинга этой территории с различным временным интервалом.

Рис. 6 Пересечение плоскости орбиты с Землей

Наиболее приемлемыми являются круговые орбиты КЛА. Круговые орбиты представляют собой окружности с центром, совпадающим с центром Земли (рис.6). Радиус таких орбит r определяют как сумму радиуса Земли и высоты полета Н летательного аппарата. Средний масштаб снимков при съемке с круговых орбит практически одинаков. Полосы снимаемой поверхности (полосы обзора), захватываемые с каждого витка летательного аппарата, также примерно одинаковы.

Плоскость орбиты КЛА пересекает плоскость экватора под некоторым углом i, который называют наклонением орбиты (см. рис .6). Если наклонение орбиты равно 90°, то ее плоскость проходит че­рез полюсы Земли. Такая орбита носит название полярной. При наклонении равном 0°, плоскость орбиты КЛА совпадает с экватором, поэтому ее называют эквато­риальной. Использование полярной и близполярной орбиты обеспечивает выполнение съемки всей поверхности за счет вращения Земли вокруг своей оси. При уменьшении наклонения орбиты сокращается территория, захватываемая съемочной аппаратурой. Периодичность (частота) съемки одной и той же территории в зависимости от параметров полета КЛА может быть от 4 раз в сутки до 5...6 раз в месяц и реже. Регулярная повторяемость съемки позволяет применять получаемые материалы для обновления мелкомасштабных топографических и специальных карт, а также осуществлять мониторинг больших территорий.

От параметров полета зависит время возвращения летательного аппарата в заданную точку. Это связано с тем, что при наклоне­нии орбиты, не равном нулю (i > 0), а также из-за вращения Земли точка пересечения орбиты КЛА с экватором смещается. Если на данном витке КЛА прошел над точкой i экватора, то после оборота вокруг Земли он пройдет уже над точкой 2 эквато­ра, затем над точкой 3 и так далее. Время возврата КЛА в исход­ную (или заданную) точку над поверхностью Земли в зависимости от параметров полета составляет 1...30сут и более. Положение КЛА, а следовательно, положение съемочной аппаратуры в про­странстве определяют в географических координатах.

Высота полета КЛА при круговых орбитах находится в преде­лах от 200 до 1000 км.

В зависимости от фокусного расстояния используемой съемочной системы и высоты полета КЛА снимки получают в масштабе от 100 000 до 10000000.

Один из главных факторов, влияющих на качество изображений - огромная скорость движения КЛА, приводящая к фотографическому смазу.

Космические съемочные системы

На рубеже XX века в нашей стране, наряду с государственными программами выполнения космических съемок, появились коммерческие космические программы. Первый коммерческий спутник был запущен российской ракетой-носителем с космодрома на Дальнем Востоке в январе 1997 г. Крупнейшие авиационные и космические компании участвуют в осуществлении собственных программ. Образовался рынок фотографических и цифровых изображений. Потребитель в соответствии с решаемой задачей, из публикаций или по Интернету выбирает из предлагаемых каталогов наиболее приемлемые для него материалы съемок. На околоземных орбитах находятся несколько десятков космических летательных аппаратов с различными съемочными системами на борту. Получаемая при этом разноплановая информация — изображения или результаты измерений определенных характеристик объектов на поверхности Земли или атмосферы — передается на пункты приема тех стран или коммерческих структур, по заказу которых осуществляют дан­ную съемку. Космические летательные аппараты отличаются параметрами полета, а съемочные системы имеют различные характеристики. Наземные комплексы приема и первичной обработки космической информации находятся в различных городах страны.

Наиболее известные и используемые в мире данные получают с зарубежных космических аппаратов NOAA, LANDSAT, SPOT, IRS, RADARSAT, ERS (табл.1).

Высокие изобразительные и метрические качества имеют фо­тографические снимки, полученные с отечественного спутника «Комета» камерами специального назначения КВР-1000 и топографической ТК-350. Среди российских пользователей для изуче­ния природных ресурсов используют снимки со спутников типа «Метеор», «Ресурс-Ф», «Ресурс-О, «Океан», съемочные системы «Фрагмент», МСУ-Э, МСУ-СК (табл.2). Съемка с периодиче­ски запускаемых на орбиты спутников позволила создать архивы изображений на различные районы земной поверхности, что дает возможность осуществлять мониторинг территорий и отдельных объектов и явлений.

Серия спутников LANDSAT (США) функционирует с начала семидесятых годов XX века. Съемку проводят с высоты орбиты 900 км. На спутниках используются многозональные съемочные системы типа MSS с линейным разрешением на местности 55 х 80 м.

В целях мониторинга кадастровой информации и создания картографической продукции масштабов 1:М = 1:5000...1:10 000 могут быть использованы космические съемочные системы высокого разрешения. Например, космические изображения земной поверхности, получаемые со спутников IKONOS и QUICK BIRD (США). Они имеют соответственно разрешение на местности 0,61 м и 1 м. Точность фотограмметрического определения коор­динат точек по снимкам спутника QUICK BIRD, снятых в пан­хроматической зоне (0,45...0,95 мкм) и с использованием опорных точек, составляет 2 м, без опорных точек — 23 м.

Французская съемочная система SPOT IMAGE, установленная на спутниках типа SPOT, имеет четыре спектральных канала (4-й канал соответствует 1,55...1,75 мкм). Линейное разрешение при панхроматической съемке равно 5... 10 м, а при многозональной — 20 м. Важное преимущество данной системы — возможность полу­чения снимков с перекрытием (получение стереопар), что позволяет проводить стереофотограмметрическую обработку снимков. Снимок захватывает участок на земной поверхности размером примерно 60 х 60 км.

Индийские спутники последнего поколения (IRS-1C, IRS-1D) оснащены съемочными системами, работающими в четырех спектральных каналах. Панхроматические снимки получают с разрешением 5...6 м, а зональные — 23 м и более.

Разработка компактных радиолокационных съемочных систем с малым потреблением энергии позволила использовать их при космических съемках. Радарные изображения, получаемые, например, с канадского спутника RADARSAT или европейского ERS, имеют разрешение 25 м. Современные методы радиолока­ции позволяют получать изображения с разрешением на местности до 5 м и менее. Изменяя ориентацию спутника в полете на соседних орбитах, можно производить стереорадиолокационную съемку. Существующие компьютерные программы позволяют выполнять фотограмметрическую обработку радарных снимков. При этом учитывается специфическая геометрия радиолокационных изображений, производится построение цифровых моделей рельефа как по стереопаре, так и с использованием методов радарной интерферометрии (определение геометрических пара­метров объектов на основе интерференции отраженных от них радиоволн).

Фотографические снимки, полученные со спутника «Комета» кадровыми камерами КВР-1000 (фокусное расстояние f= 1000 мм), имеют разрешение 2 м. Топографическая камера ТК-350, установ­ленная на спутнике «Комета», позволяет производить съемку с пе­рекрытиями. Разрешение изображения данных снимков — 10м. Результаты стереофотограмметрической обработки снимков используют для создания и обновления мелкомасштабных планов и карт. Спутники «Комета» запускают на срок до 1 мес.

Широко используют фотографические изображения, получаемые со спутников серии «Ресурс-Ф», оснащенные фотографическими камерами КФА-1000, КФА-3000, КАТЭ-200 и четырехканальным фотоаппаратом МК-4.

На территории страны имеется большое число региональных пунктов приема космических изображений, получаемых со спутника «Ресурс - О». На спутнике установлены многозональные сканеры МСУ-Э с разрешением 45 м и МСУ-СК с разрешением 150 м. Благодаря свободному доступу снимки широко используют в отечественных организациях, занимающихся исследованиями природных ресурсов.

Существуют многолетние космические проекты исследования земной поверхности, разрабатывают и реализуют новые. Информацию о них и процедуре заказа снимков можно узнать через Интернет.

Для широкого пользования разработаны и применяют станции приема и обработки изображений (низкого и среднего разрешения) земной поверхности. Аппаратно-программные комплексы включают: персональные компьютеры, антенную систему, устройство сопряжения антенной системы с компьютером и программное обеспечение. С помощью параболической антенны, установленной на поворотном устройстве, принимают передаваемые со спутника изображения. Программные средства обеспечивают слежение за спутником, автоматический прием данных, их визуализацию, просмотр и оценку. Визуализация изображения производится в черно-белом или цветном варианте, осуществляется синтезирование зональных снимков. Проводится географическая привязка всего снимка или его фрагмента, а также программными средствами рассчитываются географические координаты для каждого пикселя изображения. Выполняется фотограмметрическое преобразование изображений, составляются накидные монтажи. Программные средства позволяют выполнить тематическую обработку изображений и представить результаты обработки в картографическом виде.

  1. Дистанционное зондирование Земли. Понятие, методы, данные, приложения. Характеристики, определяющие востребованность космических снимков. Международное сотрудничество в области ДЗЗ.

Дистанционное зондирование, говоря обобщенно, - это способы получения информации об объекте на расстоянии без вступления с ним в прямой контакт, т.е. без непосредственного контакта приемных чувствительных элементов аппаратуры с поверхностью исследуемого объекта.

К методам дистанционного зондирования относятся все методы неконтактного получения информации, такие как сейсморазведка, гравиразведка и т.д. Среди них особое место занимают методы ДЗЗ из космоса.

Под дистанционным зондированием (Remote Sensing) поверхности Земли понимается наблюдение и измерение энергетических и поляризационных характеристик излучения объектов в различных диапазонах электромагнитного (ЭМ) спектра с целью определения местоположения, вида, свойств и временной изменчивости объектов окружающей среды без непосредственного контакта с ним измерительного прибора.

В рамках изучаемой дисциплины к методам ДЗЗ относится группа методов получения изображения земной поверхности в определенных участках ЭМ спектра с авиационных и космических летательных аппаратов для изучения состояния или тематического картографирования поверхности.

Таким образом, данные ДЗЗ – это, прежде всего, аэрофотоснимки и космические снимки (КС) поверхности Земли.

ДЗЗ имеет широкий круг приложений, начиная с военной разведки. В невоенной сфере большинство приложений относится к категории исследования окружающей среды:

1. Атмосфера: температура, осадки, распределение и тип облаков, концентрация газов и т.д.

2. Земная поверхность: топография, температура, альбедо, влажность почвы, тип и состояние растительности, антропогенные нагрузки и т.д.

3. Океан: температура, топография, цвет водной поверхности (планктон) и т.д.

4. Криосфера: распределение, состояние и динамические подвижки снега, морского льда, ледников.

Исторически один из наиболее развитых способов получения информации об объектах земной поверхности – это сбор информации «в поле». Сплошное изучение значительных по площади территории методами наземной съемки требует огромных экономических и временных затрат. Необходимо отметить, что наземных исследованиях трудно добиться синхронности, одновременности наблюдений на всех участках. Ко всему этому зачастую добавляется такой фактор, как труднодоступность территории.

Этих недостатков лишены методы ДЗЗ. Одной из наиболее важных характеристик ДЗЗ является возможность накапливать данные о большой области земной поверхности или объеме атмосферы за короткий промежуток времени, получая практически моментальный снимок.

Например, с помощью сканера на геостационарном метеорологическим спутнике Meteostat изображение примерно четверти поверхности Земли формируется менее чем за полчаса.

Если этот аспект рассматривать в сочетании с тем фактом, что с помощью спутниковых систем можно получать данные в ситуациях сложных для наземных исследований, когда они медленны, дороги, опасны, политически неудобны, по потенциальная помощь ДЗЗ становится еще более очевидной. Дополнительным преимуществом ДЗЗ является возможность систем выдавать калиброванные данные в цифровом виде, которые могут быть введены прямо в компьютер для обработки.

В современных условиях следующие характеристики определяют востребованность космических снимков:

- Объективность – каждый КС является документом, объективно отражающим состояние местности на момент съемки. Подделать КС практически невозможно, так как съемку ведут различные компании-операторы и попытки изменения данных могут быть легко обнаружены.

- Актуальность материалы космической съемки можно получить на различные даты, включая съемку на заказ, которая осуществляется, как правило, в течение нескольких недель.

- Масштабность современные приборы позволяют одновременно снять значительные по площади территории с довольно высокой степенью детализации.

- Экстерриториальность – участки съемки никак не привязаны к государственным и территориальным границам и для проведения съемки не требуется разрешение.

- Доступность – в настоящее время данные ДЗЗ с пространственным разрешением 2м и ниже являются открытыми. Процедура заказа и получения снимков достаточно проста.

Данные ДЗЗ, особенно полученные с космических спутников, зачастую нельзя получить никаким другим способом. Современная служба погоды в значительной мере основана на наблюдениях со спутников. Следует отметить, что больше территория государства, тем более эффективно применение дистанционных методов.

Согласно Московской конвенции от 3 декабря 1986 г. О передаче и использовании данных ДЗЗ из космоса, исследование и использование космического пространства осуществляются на благо и в интересах всех стран независимо от уровня их экономического или научного развития и устанавливается принцип, в соответствии с которым космическое пространство открыто для исследования и использования на основе равенства. Эта деятельность осуществляется на основе уважения принципа полного суверенитета всех государств и народов над своими богатствами и природными ресурсами, с должным учетом признаваемых по международному праву интересов других государств и организаций, находящихся под юрисдикцией. Подобная деятельность должна осуществляться таким образом, чтобы не наносить ущерба законным правам и интересам зондируемого государства.

Организация объединенных наций и соответствующие учреждения системы ООН содействуют международному сотрудничеству в области ДЗЗ, включая техническую помощь и координацию. Доступ к данным ДЗЗ регулируется так называемой политикой «открытого неба» (Open Sky Policy). Основным международным консультативным органом координации политики в области ДЗЗ является CEOS (Committee on Earth Observation Satellites).

  1. Электромагнитный спектр. Длины волн, используемые при дистанционном зондировании.

Любое тело, температура которого выше абсолютного нуля (0 К),является источником электромагнитного излучения, поскольку его молекулы находятся в возбужденном состоянии, которое отличается от состояния полного покоя. В частности, такими источниками являются Солнцу и Земля. Все тела при температуре выше абсолютного нуля излучают электромагнитные волны, которые могут иметь разную длину волны. Диапазон длин волн от гамма-излучения до радиоволн принято называть электромагнитным спектром.

При дистанционном зондировании используют несколько диапазонов электромагнитного спектра. Ту его часть, в которой применимы законы оптики, называют оптическим диапазоном.

Законы оптики описывают такие явления, как отражение и преломление, которые можно использовать для фокусировки излучения. К оптическому диапазону относится рентгеновское излучение (0,002 мкм), видимый свет и инфракрасное изучение вплоть до дальней зоны (1000 мкм). Наименьшие длины волн, которые используются при дистанционном зондировании, относятся к ультрафиолетовой части спектра, расположенной непосредственно за фиолетовой зоной видимого диапазона.

Видимый диапазон, который часто называют световым, занимает относительно небольшую часть электромагнитного спектра. Это единственный диапазон, в котором применимо понятие цвета. Основными цветами принято считать синий, зеленый и красный. Это относится и к соответствующим диапазонам видимого спектра.

Наибольшие длины волн, которые используют при дистанционном зондировании, принадлежат тепловому инфракрасному и микроволновому диапазонам. Тепловое инфракрасное излучение содержит информацию о температуре поверхности, которая может быть связана, например, с минеральным составом пород или с определенной растительностью. Микроволновый диапазон используют для получения информации о шероховатости и других свойствах поверхности, в частности о содержании влаги.

  1. Природные условия съемки. Поглощение и перенос излучения в атмосфере. Окна прозрачности атмосферы.

Освещенность земной поверхности, т.е. количество световой энергии, приходящейся на единицу площади, преимущественно складывается из прямой и рассеянной солнечной радиации, соотношение между которыми меняется в зависимости от высоты Солнца, крутизны и ориентировки склонов.

При высоком Солнце преобладает прямая радиация, что приводит к резким различиям в освещенности склонов разной экспозиции: одни склоны оказываются освещенными, другие — в тени или полутени. В ясный, безоблачный день в околополуденные часы освещенность склонов может различаться в четыре—шесть раз. Тени в это время занимают наименьшую площадь, но зато плотность их очень велика, поэтому объекты в тенях распознаются очень неуверенно или не распознаются вовсе. При низком Солнце возрастает доля рассеянной радиации, тени становятся более прозрачными, хотя и значительно большими по площади. Разница в освещенности склонов разной экспозиции уменьшается.

Повысить надежность дешифрирования территорий с разными природными условиями можно, используя снимки, полученные при разной высоте Солнца. Так, залесенные территории лучше дешифрируются при минимальных размерах теней, т.е. при высоком Солнце (более 40°), так как в противном случае падающие тени деревьев верхнего яруса закрывают кроны более низких ярусов. Наоборот, микрорельеф в степных и пустынных районах более уверенно распознается при низком Солнце за счет большей площади теней. При дешифрировании горных территорий наибольший эффект дает использование снимков, полученных при средней высоте Солнца, когда тени не слишком велики и более прозрачны, чем в полдень.

Приход солнечной радиации на поверхность Земли зависит от ориентировки и крутизны склонов. Не только прямое, но и рассеянное освещение всегда больше на склонах южной экспозиции. В январе крутые южные склоны могут иметь продолжительность возможного облучения в 13-14 раз больше, чем северные. Горизонтальные и наклонные участки по-разному освещаются Солнцем: в утренние часы наклонные (к Солнцу) поверхности освещены сильнее, чем горизонтальные, а в полдень, наоборот, больше радиации поступает на горизонтальные участки. Это приводит к тому, что одинаковые или близкие по характеру объекты на разных склонах изображаются на снимках неодинаково, что важно иметь в виду при дешифрировании.

Метеорологическим элементом, существенно влияющим на освещенность, является облачность. С одной стороны, облака являются помехой при съемке, так как их наличие приводит к тому, что практически выпадают из обработки площади, закрытые тенями от них, а при съемке из космоса и их изображениями. С другой стороны, облачность изменяет освещенность снимаемой территории. Кучевая облачность снижает освещенность в два—четыре раза, облака среднего яруса — на %. Облачность верхнего яруса, наоборот, увеличивает общую освещенность за счет увеличения доли рассеянной радиации. Съемка под тонкой пленкой облачности верхнего яруса дает снимки, исключительно подходящие для дешифрирования горных районов, так как на них практически отсутствуют тени. Однако такая ситуация встречается крайне редко.

Основным источником электромагнитного излучения является Солнце. Прежде чем солнечное излучение достигнет Земли, оно должно пройти через атмосферу. Выделяют три основных типа взаимодействия излучения с атмосферой: поглощение, перенос и рассеивание. Излучение, прошедшее через атмосферу, затем отражается или поглощается земной поверхностью.

При распространении электромагнитного излучения через атмосферу оно частично поглощается молекулами различных газов. Наибольшей способностью к поглощению солнечного излучения обладают озон (О3), пары воды (Н20) и углекислый газ (С02). На рис.2.3 показана кривая прозрачности атмосферы в диапазоне длин волн от 0 до 22 мкм.

Для дистанционного зондирования используют только те диапазоны длин волн, которые лежат вне основных интервалов поглощения. Такие диапазоны называются окнами прозрачности атмосферы (отображены на графике белым цветом). Они представляют собой такие участки спектра электромагнитного излучения, которые не поглощаются атмосферой. При съемке поверхности Земли из космоса учитывают этот факт, а потому, съемку проводят только в окнах прозрачности.

Окна прозрачности:

1) "большое окно": 0,3-1,3 мкм (видимый диапазон);

2) 1,5-1,8 мкм (инфракрасный диапазон);

3) 2,0-2,6 мкм (инфракрасный диапазон);

4) 7,0-15,0 мкм (тепловой инфракрасный диапазон);

5) 0,5 мм и более 10м (микроволновый и радиодиапазон - наибольшая прозрачность).

  1. Коэффициент спектральной яркости, его измерение в полевых и лабораторных условиях. Спектральная отражательная способность основных классов природных образований.

  1. Разрешающая способность и пространственное разрешение снимков. Радиометрическое, спектральное и тепловое разрешение. Временное разрешение.

Для характеристики детальности аэрокосмических снимков предложено несколько количественных показателей. Среди дешифровщиков наибольшее распространение получили два показателя: пространственное разрешение и разрешающая способность.

Показатель «разрешающая способность» используется для:

1) оценки фотографических материалов;

2) оценки объективов съемочных камер;

3) характеристики способности зрительной системы человека различать детали и т.д.

Для определения фактической величины разрешающей способности конкретного фотоснимка измеряют с помощью измерительной лупы ширину нескольких наиболее узких и контрастных объектов на снимке. Среднее значение измеренных величин в миллиметрах, допуская определенное упрощение, принимают за IR и вычисляют разрешающую способность снимка, которую используют для сравнительной оценки различных снимков и съемочных систем.

Показатель «разрешающая способность» наиболее подходит для оценки возможности снимка раздельно передавать линейные близко расположенные объекты.

Показатель «пространственное разрешение» подходит для оценки размера на местности того минимального объекта (или его отдельной детали), который изобразится на снимке.

Говоря о пространственном разрешении, ответственном за детальность изображения на снимке, отметим еще такие виды разрешений, характеризующие системы дистанционного зондирования, как радиометрическое (энергетическое), а также спектральное, тепловое и временное разрешение.

Радиометрическое (яркостное) разрешение – число уровней яркости, регистрируемых приемником излучения. Оно может быть выражено также в битах (2 уровня – 1 бит, 4 уровня – 2 бит, 16 уровней –4 бит, 64 уровня – 6 бит, 256 уровней – 8 бит, 1024 уровня – 10 бит).

Спектральное разрешение определяется шириной спектральных зон съемки и измеряется в нанометрах (нм) или микрометрах (мкм). Наиболее низкое спектральное разрешение (сотни нм) имеют фотографические панхроматические снимки и снимки, получаемые инфракрасными радиометрами, а самое высокое (до 10 нм) — гиперспектральные снимки. Повышение спектрального разрешения позволяет подробнее классифицировать объекты, например, на основе знаний о полосах поглощения воды, хлорофилла, минералов, газов в атмосфере.

Тепловое разрешение характеризуется величиной разностей температур различных объектов, которые удается зарегистрировать тепловым снимком. У лучших снимков оно составляет десятые доли градуса.

Временное разрешение зависит от периодичности съемок и оценивается интервалом времени между повторными съемками. Оно меняется от 15–30 мин при регулярной съемке с геостационарного метеоспутника, суточного интервала у околоземных метеорологических спутников, 16–18 сут у ресурсных спутников на солнечно-синхронных орбитах, до интервалов в несколько лет, характерных для съемок, выполняемых, например, с картографических спутников.

  1. Информационные свойства снимков. Определение информации применительно к аэрометодам. Недостаток и избыток информации. Виды информации: полная, оперативная, извлеченная.

Дешифрирование аэрофотоснимков с точки зрения психологии представляет собой информационно-логический процесс творческой деятельности человека в условиях недостатка или избытка информации и отсутствия системы алгоритмов. Алгоритмы вырабатываются в ходе восприятия ситуации. В этом состоит трудность процесса дешифрирования.

Недостаток информации объясняется многозначностью дешифровочных признаков и невозможностью отперелить некоторые свойства объектов в камеральных условиях (например, изображение одним и тем же тоном разных типов растительности и грунтов, невозможность определить назначение постройки и т.д.).

Избыток информации связан с изображением на аэроснимках тех объектов, дешифрирование которых не вызывается необходимостью (например, движущийся транспорт не изображается на топографической карте).

Задача дешифрирования – извлечь как можно больше с аэроснимка информации, необходимой для поставленной цели.

Результаты дешифрирования зависят от информационной емкости снимков.

Применительно к аэрометодам ИНФОРМАЦИЯ – это совокупность сведений о состоянии объектов земной поверхности, которые необходимы для решения тех или иных задач, на основе которых используются фотоснимки.

Все сведения, содержащиеся в аэрофотоснимках (АФС), можно разделить:

1) собственно информационные, т.е. сведения необходимые для решения задачи данного исследования;

2) сведения, не представляющие интереса для решения этих задач, являющиеся помехой для них и даже затрудняющие решение. Это информационный шум.

Например, облака для синоптических карт – источник информации, для ландшафтного дешифрирования – это шум.

Каждый снимок, используемый в научно-практических целях, содержит определенные сведения об изучаемом объекте. Для оценки пригодности как носителя информации, снимок может быть подвергнут как формальному, так и смысловому анализу.

В основу формальной оценки объема информации, содержащейся в снимке, может быть положена ее связь с разрешающей способностью. Чем выше разрешающая способность снимков, тем больший объем информации в них содержится.

На основе смысловой информации можно определить ценность ее для исследователя.

Например, четкое изображение на инфракрасных аэроснимках породного состава лесной растительности, указывает на эффективность использования данных снимков для дешифрирования ее видового состава

Путем дешифрирования аэрокосмических снимков можно получить самые разнообразные сведения, факты. Однако к информации относятся только те из них, которые отвечают поставленной задаче, цели.

Содержание и количество извлекаемой из снимков информации обусловливается:

- уровнем наших знаний об объекте;

- заранее сформулированными требованиями к информации (например в виде легенды или перечня условных знаков).

Полная информация – максимально количество информации, которую в каждом конкретном случае можно извлечь из снимков, полученных при оптимальных технических и погодных условиях съемки, а также масштабе.

Часто используются снимки, полученные не при оптимальных условиях. Содержащееся в них количество информации составляет оперативную информацию.

Извлеченная информация – это сведения, полученные путем дешифрирования снимков. Извлеченная информация всегда меньше оперативной.

Ошибки при дешифрировании объектов могут возникать по следующим причинам:

1) при дешифрировании слабоконтрастных объектов;

2) ложное опознавание объектов из-за совпадения дешифровочных признаков (например, известняки, солончаки и снежники);

Часто дешифровщик сталкивается с помехами и шумом, которые не представляют ценности для исследования. К помехам можно отнести наличие бликов, изображение на снимке толщи атмосферы, которая в виде дымки накладывается на изображение, или таких атмосферных явлений как туман, пыльные бури и т.д.

Деление получаемых сведений на информацию и шум условно. Они имеют одну природу и могут взаимно переходить друг в друга.

Например, если при фотографической съемке шумом является изображение облаков, закрывающих местность, то при синоптическом дешифрировании космических снимков Земли помехой служат изображение поверхности земли и воды, которое накладывается на изображение облачности.

  1. Информационное поле снимков. Информационная емкость снимков. Виды информационной емкости ( формальная, вероятностная, оценочная).

Качественное разнообразие и количество извлеченной информации в значительной степени определяются свойствами информационного поля снимков. Простота сопоставления снимков с натурой, внешнее совпадение изображения объектов с тем, как мы их видим, определяют наглядность снимков. Объекты узнаются на снимках, если их изображение соответствует непосредственному зрительному образу и если оно хорошо известно из практики, например, облачность.

Наглядность снимков всегда особенно ценилось. Предполагалось, что именно возможность прямого визуального распознавания является главным достоинством снимков с летательных аппаратов. Но по мере развития метода большое значение стали придавать выразительности изображения. Изображение тем выразительнее, чем интенсивнее и контрастнее выделены на нем объекты и явления, являющиеся предметом дешифрирования. Таким образом, выразительность изображения харак­теризуется простотой дешифрирования объектов и явлений, наиболее существенных для решения поставленной задачи.

Наглядность и выразительность в известном смысле противоположные, взаимоисключающие свойства аэрокосмического изображения. Так наибольшей наглядностью обладают цветные в натуральных цветах снимки. Меньшая наглядность у цветных спектрозональных снимков, но зато при дешифрировании, например, лесной растительности они имеют большую выразительность.

Наглядность и выразительность изображения связаны с его масштабом, но оптимальные по выразительности и наглядности масштабы снимков не совпадают друг с другом. Наглядность возрастает с укрупнением масштаба.

Выразительность же связана с уровнем обобщенности фотоизоб­ражения и поэтому оно оптимально для различных объектов и комплексов в разных масштабах.

Говоря о ценности снимков, обычно говорят об их дешифрируемости. Дешифрируемость снимков определяется как их свойствами, так и с учетом целей дешифрирования. Известно, что одни и те же снимки обладают разной дешифрируемостью по отношению к разным объектам и задачам.

Задача дешифрирования – извлечь как можно больше информации с АФС, необходимой для решения поставленной задачи. Результаты дешифрирования зависят от информационной емкости снимка.

Информационная емкость АФС и топокарт – это максимальное количество информации, содержащееся в них. Это количественная мера предельной возможности передавать информацию при изучении АФС для решения тех или иных задач.

Информационная емкость определяется:

- суммарной разрешающей способностью фотографической системы;

- количеством тонов или цветов фотоизображения.

Различают емкости снимков:

- формальную;

- вероятностную;

- оценочную.

Формальная информационная емкость – связана с разрешающей способностью и контрастностью АФС. Информация передается скоплением отдельно различимых точек – элементарных носителей информации. Объем информации зависит от размера точек, из которых складывается изображение, и от числа различимых тонов (цветов). Чем больше ступеней тональности, тем больше различимых контуров может быть изображено на снимке, следовательно, объем информации увеличится.

Вероятностная информационная емкость – количество информации, содержащееся на снимке с вероятностью или частотой его появления. Вероятность зависит от характера ландшафта. Знание изображаемой местности увеличивает вероятность появления того или иного объекта, изображаемого определенным цветом.

Например, белым тоном изображаются снег, солончак, пляж из кварцевого песка, известняк и т.д. Вероятность появления солончака в пустыне больше, чем в тундре, а вероятность появления снега в тундре больше, чем в пустыне.

Оценочная информационная емкость. Оценочная информация подразделяется на полезную, условно полезную и бесполезную.

Полезная информация – составляет цель дешифрирования.

Условно полезная информация – сведения, которые служат индикаторами для получения полезной информации.

Бесполезная информация – сведения, не представляющие ценности (т.е. информационный шум).

Например, для топографического дешифрирования, изображение дорог – полезная информация; подходы к броду – индикаторы для дешифрирования брода; стога сена, нерастаявший снег – информационный шум.

  1. Дешифрируемость снимков. Полнота и достоверность дешифрирования. Факторы, определяющие надежность дешифрирования. Факторы, влияющие на дешифровочные свойства аэрокосмических снимков.

Дешифрирование снимков как метод исследования территорий, акваторий и некоторых атмосферных явлений по аэрокосмическому изображению основано на зависимости между свойствами объектов и характером их воспроизведения на снимках.

Единый процесс дешифрирования включает стадии:

- обнаружение;

- распознавание;

- определение качественных и количественных характеристик объектов;

- представление результатов дешифрирования в графической (картографической),цифровой или текстовой форме.

Дешифрируемость снимков – способность их давать определенное количество информации о сфотографированной местности.

Дешифрируемость определяется: свойствами снимков и целями дешифрирования. Одни и те же снимки обладают разной дешифрируемостью по отношению к разным объектам и задачам.

Факторы, определяющие надежность дешифрирования

Показатели надежности:

  • Точность результатов дешифрирования (ошибка положения опознанных контуров к их истинным положениям на геодезической карте).

  • Полнота результатов дешифрирования (отсутствие пропусков).

  • Достоверность (отсутствие ложной информации).

Факторы, определяющие надежность:

1.    Надежность исполнителя – зависит от его физиологических данных (зрение) и психических  данных (логика, интуиция, зрительная память); точности опознавания границ (обычно это ± 0,15 мм); точности их нанесения на будущую карту; квалификации дешифровщика (опыт работы); уровень знаний дешифровщика; профессиональная подготовка; знание изучаемой территории;

2.    Природные особенности территории и объектов дешифрирования – более надежно дешифрируются объекты с четкими границами, если для их распознавания используются прямые дешифровочные признаки.

3.    Качество материалов и условия работы. Качество материалов – это полное их соответствие поставленной задаче; снимки должны иметь оптимальный масштаб и разрешение, правильно выбранные спектральные зоны и сезон (и время суток) съемок. Должно быть хорошее освещение и непродолжительная работа (период работы состоит из: периода привыкания, периода стабильной работы, периода наступления усталости).

4.    Выбор методики дешифрирования (применяемые методы, способы обработки материалов, последовательность анализа снимков и т.д.).

Точность результатов дешифрирования принято оценивать ошибкой положения опознанных контуров относительно точек геодезической основы или ошибкой их взаимного положения.

Показатель качества вычисляется по формуле отношением: суммы правильно определенных объектов к общему числу объектов.

Факторы, влияющие на дешифровочные свойства аэрокосмических снимков:

ОсвещенностьНадо использовать снимки, полученные при разной высоте Солнца. Так, лесные территории лучше дешифрируются при минимальных размерах теней, т.е. при высоком Солнце (более 40°), так как в противном случае падающие тени деревьев верхнего яруса закрывают кроны более низких ярусов.

Наоборот, микрорельеф в степных и пустынных районах более уверенно распознается при низком Солнце за счет большей площади теней.

При дешифрировании горных территорий наибольший эффект дает использование снимков, полученных при средней высоте Солнца, когда тени не слишком велики и более прозрачны, чем в полдень.

Приход солнечной радиации на поверхность Земли зависит от ориентировки и крутизны склонов. Не только прямое, но и рассеянное освещение всегда больше на склонах южной экспозиции. В январе крутые южные склоны могут иметь продолжительность возможного облучения в 13-14 раз больше, чем северные.

Горизонтальные и наклонные участки по-разному освещаются Солнцем:

•        в утренние часы наклонные (к Солнцу) поверхности освещены силы- нее, чем горизонтальные,

•        а в полдень, наоборот, больше радиации поступает на горизонтальные участки.

Это приводит к тому, что одинаковые или близкие по характеру объекты на разных склонах изображаются на снимках неодинаково, что важно иметь в виду при дешифрировании.

Влияние облачности. Кучевая облачность снижает освещенность в два—четыре раза, облака среднего яруса — на 14.  Облачность верхнего яруса, наоборот, увеличивает общую освещенность за счет увеличения доли рассеянной радиации. Съемка под тонкой пленкой облачности верхнего яруса дает снимки, исключительно подходящие для дешифрирования горных районов, так как на них практически отсутствуют тени. Однако такая ситуация встречается крайне редко.

Влияние на участок местности освещенности и увлажненности. На склонах, обращенных на юг, освещенность наибольшая, следовательно наилучшие условия для произрастания для светолюбивых древесных пород (таких как сосна обыкновенная, осина, береза)

В узких лощинах вытянутых в долготном направлении и на крутых северных склонах освещенность наименьшая и, следовательно, там могут преобладать теневыносливые породы (такие как ель и пихта).

Характер увлажнения равнинной местности так же в некоторой мере определяется рельефом.

В локальных понижениях и логах образуются болота, в широких поймах рек создаются условия для избыточного переувлажнения. В таких местах произрастают влаголюбивые породы (такие как ива, осина, ель, береза пушистая, а так же некоторые кустарники).

Дешифрирование вырубок определяется по характерному рисунку дорожной сети (магистральных волокон), формам, размерам (они должны быть в соответствие с требованиями), и контрастом между восстанавливающейся на вырубках растительностью и прилегающими лесными участками.

Техногенно-нарушенные участки лесов дешифрируются при сопоставлении панхроматических и спектрозональных снимков. При этом на панхроматических снимках наблюдается сложная структура территории, состоящая из большого количества «полос» и точек, при этом фактура изображения очень пестрая. В то же время на спектрозональном снимке такой участок представляется более-менее равномерным тоном.

  1. Изобразительные свойства снимков. Структура и текстура изображения. Границы и контуры, их виды, особенности изображения

Для каждого ландшафта свойственен свой набор и сочетание элементов. Каждый ландшафт имеет индивидуальные черты, а также сохраняет общие признаки, по которым можно производить: отождествление, сравнение, типизацию и эталонирование.

Структурные особенности каждого ландшафта основаны на тесных внутренних связях, при правильном анализе которых можно по одному звену сложного комплекса установить остальные взаимосвязи. Структура изображения географического комплекса тесно связана с генезисом данной системы. Рисунок изображения соответствует структуре морфологических частей ландшафта или более крупной географической единице, в зависимости от масштаба изображения.

Например,

- на глобальных космических снимках макроструктура изображения соответствует климатическим поясам или же природным зонам;

- на крупномасштабных снимках для пойменных ландшафтов структура изображения будет соответствовать изображению отдельных типов пойм.

Каждый аэрокосмический снимок, каждый рисунок на снимке несет в себе определенное содержание, и вместе с тем рисунки различаются по форме. Каждому природно-территориальному комплексу соответствует определенный рисунок, передающий его морфологию.

Например, для ландшафтов, сформированных лёссовидными отложениями (Оршано-Могилевское плато) характерен пятнистый рисунок изображения, который формируют различного размера округлой формы суффозионные западины (блюдца), а для нижнего течения р. Припяти, где преобладает гривистый пит поймы, характерен дугообразный рисунок изображения.

Таким образом, любому природному комплексу свойственны как бы две разные сложности:

1) сложность системы по набору компонентов подчеркивается структурой;

2) сложность из-за раздробленности компонентов предается текстурой рисунка изображения.

Структура выделяется:

- тональная (цветовая);

- геометрическая (контурная).

Сочетание одних тонов цветов образует изображение. Смена одних тонов и цветов другими происходит вместе с чередованием объектов с различной яркостью.

Контурность всегда сопутствует тональной структуре, но тональная структура может быть практически бесконтурной, если одни тона или цветовые оттенки плавно переходят в другие, не образуя четких границ.

Например, изображение на космических снимках пустынных территорий с однородным почвенно-растительным покровом.

В рисунке фотоизображения отражаются внутренние связи между компонентами ландшафта и процессы, происходящие в данном природном комплексе, а также пространственное размещение их элементов. Т.Е. рисунок передает структуру ландшафтных единиц.

При дешифрировании объектов на аэрокосмических снимках приходится сталкиваться с различными границами.

Природные границы различаются:

1) резкие, или линейные (урезы воды, бровки оврагов и т.д.);

2) размытые, или диффузные (плавные переходы болот к суходолу);

3) мозаичные, или дисперсные (некоторые опушки лесов, верхняя граница лесного пояса в горах).

Контуры, образуемые на снимках этими границами, обобщаются (генерализуются) различным образом.

Линейные контуры (овраги) выпрямляются и упрощаются за счет исчезновения мелких извилин. Обобщение линейных контуров имеет много общего с картографической генерализацией, чем объясняется сходство в очертаниях побережий, речной сети на картах и снимках, вплоть до глобальных космических. Линейные резкие контуры при переходе к снимкам более мелкого масштаба изменяют длину крайне незначительно.

Размытые контуры с уменьшением масштаба становятся контрастными, более узкими и приближаются к линейным. Границы в виде полос, представляющие собой переходные комплексы между различными ландшафтными единицами, становятся контрастными, хорошо заметными и также приближаются к линейным контурам.

Мозаичные границы, в зависимости от степени дисперсности, строения либо укрупняются, сохраняя мозаичность, либо превращаются сначала в диффузные, а затем в линейные границы.

На увеличенных снимках контрастные линейные контуры с укрупнением масштаба передаются с большими подробностями. Изображение получается более детальным, выделение контуров не представляет труда. Контуры мозаичные и размытые, (например сложные опушки леса, границы болот и т.д.) на увеличенных снимках выделяются с меньшей уверенностью и меньшим однообразием, чем на контактных отпечатках. Линейные и контрастные объекты выдерживают большее уменьшение, чем точечные и малоконтрастные.

  1. Генерализация аэрокосмического изображения. Закономерности генерализации изображения космических снимков.

С изменением масштаба снимка происходит обобщение изображения, следовательно, изменяется и его дешифруемость. Решение задач генерализации при переходе от снимка к карте, а также разработка проблем автоматизации дешифрирования требуют знания тех закономерностей, которым подчиняется обобщение изображения при переходе от масштаба к масштабу.

Генерализация изображения на аэрокосмических снимках включает геометрические и тоновое обобщение рисунка изображения.

Генерализация изображения зависит от факторов:

- технических (масштаб и разрешение снимков, метод и спектральный диапазон съемки);

- природных (влияние атмосферы, особенности территории).

В результате такой генерализации изображение многих черт земной поверхности на снимках освобождается от частностей, в то же время разрозненные детали объединяются в единое целое, поэтому более четко изображаются объекты высших таксонометрических уровней, крупные региональные и глобальные структуры, глобальные и планетарные закономерности.

В отличие от картографической генерализации, носящей творческий характер, генерализация изображения космических снимков жестко подчиняется физико-техническим законам и управляющее воздействие на нее более ограничено. Оно может быть реализовано путем продуманного выбора средства и параметров съемки (съемочных систем, масштаба, зоны спектра) или преобразования снимков 9увеличения уровней квантования, параметров фильтрации).

Закономерности генерализации изображения космических снимков.

Размер воспроизводимых объектов зависит от их формы и от контраста с окружающим фоном; происходит упрощение формы, обобщение тонов и цветов; черные и белые тона исчезают и заменяются менее контрастными; характерно более быстрое исчезновение темных контуров на светлом фоне, чем светлых на темном фоне. По-разному обобщаются линейные, размытые (диффузные), мозаичные границы и контуры.

Влияние генерализации изображения на дешифруемость космических снимков двойственное: оно может быть положительное и отрицательное.

1) Сильно обобщенное изображение уменьшает возможность высокоточного и детального картографирования по космическим снимкам, в частности – влечет ошибки дешифрирования. Поэтому на практике стремятся к использованию снимков высокого разрешения, а для оценки полноты и достоверности дешифрирования космических снимков прибегают к проверке по аэроснимкам.

2) обобщенность изображения относится к достоинствам снимка:

- позволяет использовать космические снимки для непосредственного составления тематических карт в средних и мелких масштабах без трудоемкого детального многоступенчатого перехода от крупных масштабов карт к мелким, что обеспечивает экономию средств и времени;

- дает преимущества смыслового, содержательного плана (на космических снимках выявляются важные объекты, скрытые на снимках более крупных масштабов).

Сравнение дешифрируемости снимков различных масштабов позволило получить общие закономерности географического обобщения воздушных и космических снимков Земли.

1) Изменение масштаба съемки влечет за собой и изменение рисунка.

2) Одни объекты в силу обобщения отходят на второй план или вовсе не изображаются на снимках, другие становятся основными.

3) Оптимальными масштабами для дешифрирования являются:

- детальные 1: 1 000 – 1: 2 000 – фации;

- крупномасштабные 1: 2 000 – 1: 10 000 – фации;

- среднемасштабные 1: 15 000 – 1: 25 000 – урочища;

- мелкомасштабные 1: 200 000 – 1: 300 000 – группы урочищ;

- сверхмелкомасштабные 1: 1 000 000 – 1: 10 000 000 – ландшафты;

- глобальные 1: 50 000 000 и мельче – географические зоны.

Для количественной оценки степени обобщения контуров существует несколько критериев. Поскольку изображение контура представляет собой извилистую линию с тем большим количеством извилин, чем меньше она обобщена, можно объективно оценивать степень обобщения контура, сравнивая извилистость на разных изображениях.

Коэффициент общей извилистости (по Н.М. Волкову) подсчитывается по формуле:

K1 = L / D,

где D – длина прямой линии между точками А и В; L – длина извилистой линии между этими точками.

K2 = l / d ,

где l – средняя длина дуг извилин; d –средняя длина хорд.

Коэффициент изменения площадей при переходе от масштаба к масштабу равен:

Ks = S1/ S2

Линейные резкие контуры при переходе к снимкам более мелкого масштаба изменяют длину крайне незначительно. Существенно укорачиваются длины контуров, проведенные по мозаичным границам (от 30 до 50% длины). В соответствии с этим уменьшается коэффициент общей извилистости, чем меньше, тем извилистее сам контур.

  1. Методы преобразования космического изображения – контратипирование, увеличение, синтезирование, квантование, фильтрация. Виды фильтрации.

Высококачественные аэрокосмические изображения обладают чрезвычайно большой информационной емкостью. При визуальном дешифрировании вследствие ограниченной чувствительности зрительного анализатора не удается извлечь всю информацию, содержащуюся на снимке.

Задачей преобразования изображения является представление данной информации в более выразительном виде, чтобы облегчить ее наиболее полное извлечение.

В настоящее время для преобразования используют методы: фотографические, электронные, цифровые, иногда комплексируя их.

Преобразование снимка сводится к получению нового изображения с заданными свойствами.

Преобразование изображения не добавляет новой информации, а только приводит ее к виду, удобному для дальнейшего использования.

Виды преобразования аэрокосмического изображения: контратипирование, увеличение, синтезирование, квантование, фильтрация.

Контратипирование. Обычно для дешифрирования используют не оригинальные снимки – негативы, а их контратипы. Всякий процесс контратипирования связан с потерей информации, тем большей, чем выше разрешающая способность сигнала. При контратипировании качество снимков ухудшается в 1,5 – 2 раза. Это связано, прежде всего, с изготовлением отпечатков на фотобумаге, изобразительные возможности которой ниже, чем фотоматериала на прозрачной подложке.

В процессе изготовления контратипов возможно некоторое преднамеренное преобразование изображений и изготовление снимков, наиболее подходящих для дешифрирования тех или иных объектов.

Например, при печати возможно уменьшение или усиление контраста изображения. Это осуществляется на электронно-копировальном приборе.

Увеличение. Наиболее распространенный вид преобразования снимков – их увеличение. В связи с тем, что разрешающая способность фотоматериалов гораздо выше, чем глаза, необходимо их увеличение.

Например, если разрешающая способность снимка составляет 10-40 мм-1 , его необходимо увеличить в 2-8 раз. Только в этом случае можно извлечь всю информацию, содержащуюся в снимке.

Увеличение до нескольких десятков аз приведет к появлению зернистости фотоизображения, которая усложняет процесс дешифрирования.

Синтезирование. Цветное изображение можно получить не только путем печати с цветных пленок, но и путем синтезирования цветных изображений по зональным черно-белым снимкам.

Квантование. При изучении объектов, которые на снимках изображаются плавными тональными переходами, может быть полезным квантование изображения по плотности, т.е. представление непрерывного полутонового изображения в виде дискретных ступеней плотности.

Для более четкого разделения используют цветное окрашивание ступеней плотности, т.е. придают каждой ступени плотности определенный цвет. Такой квантовый цветной снимок может внешне напоминать карту с ярко раскрашенными контурами.

Квантование изображения наиболее просто выполнять электронным методом.

Например, исследованиями установлено, что содержание гумуса в почвах тесно коррелирует с распределением на снимке плотности изображения. Таким образом, путем квантования можно составить картограмму содержания гумуса.

Фильтрация позволяет выделить объекты изучения из среды прочих объектов на снимке и тем самым облегчает распознавание этих объектов. В процессе фильтрации избыточная для решения определенной задачи информация отсеивается, а необходимая приводится к виду, упрощающему ее использование.

Увеличивая дешифруемость снимков, фильтрация повышает надежность и скорость дешифрирования, открывает путь к автоматизации дешифрирования.

С использованием фильтрации можжно решать следующие задачи:

- преобразование гаммы тонов или цветов;

- разделение изображения по составным элементам (например, выделение линейных объектов);

- переход от полей с непрерывно и плавно изменяющимися тонами (плоскостью изображения) к ступенчатому изображению, т.е. выделение нескольких градаций.

Для решения данных задач используются следующие виды фильтрации: оптическая, фотохимическая, фотографическая, метод контурной и двухзональной печати и т.д.

С использованием фотографической фильтрации можно достигнуть подчеркивания границ контуров, выявления изменений изображения на серии снимков и выявления линейных элементов определенной ориентации. Приемы оптической фильтрации позволяют выделить линейные объекты определенной ориентировки, например песчаные гряды, овражно-балочную и мелиоративную сеть и т.д.

  1. Технологическая схема дешифрирования. Полевое дешифрирование и его виды.

Соседние файлы в папке ЭКЗАМЕНЫ