Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
309
Добавлен:
22.07.2018
Размер:
1.28 Mб
Скачать

Изображение получается более детальным, выделение контура не представляет труда. Контуры мозаичные и размытые, например сложные опушки леса, границы болот и т. д., на увеличенных снимках выделяются с меньшей уверенностью и меньшим однообразием, чем на контактных отпечатках. Известно, например, что линейные и контрастные объекты выдерживают большее уменьшение, чем точечные и малоконтрастные.

8.1. Генерализация аэрокосмического изображения

С изменением масштаба снимка происходит обобщение изображения, следовательно, изменяется и его дешифрируемость. Решение задач генерализации при переходе от снимков к карте, а также разработка проблем автоматизации дешифрирования требуют знания тех закономерностей, которым подчиняется обобщение изображения при переходе от масштаба к масштабу.

Генерализация изображения на аэрокосмических снимках включает геометрическое и тоновое обобщение рисунка изображения и зависит от ряда факторов — технических (масштаб и разрешение снимков, метод и спектральный диапазон съемки) и природных (влияние атмосферы, особенности территории). В результате такой генерализации изображение многих черт земной поверхности на снимках освобождается от частностей, в то же время разрозненные детали объединяются в единое целое, поэтому более четко изображаются объекты высших таксонометриче- ских уровней, крупные региональные и глобальные структуры, глобальные и планетарные закономерности.

В отличие от картографической генерализации, носящей творческий характер, генерализация изображения космических снимков жестко подчиняется физико-техническим законам и управляющее воздействие на нее более ограничено. Оно может быть реализовано путем продуманного выбора средств и параметров съемки (съемочных систем, масштаба, зоны спектра) или преобразования снимков (увеличения уровней квантования, параметров фильтрации).

Экспериментально выявлены некоторые закономерности генерализации изображения космических снимков. Размер воспроизводимых объектов зависит от их формы и от контраста с окружающим фоном; происходит упрощение формы, обобщение тонов и цветов; черные и белые тона исчезают и заменяются менее контрастными; характерно более быстрое исчезновение темных контуров на светлом фоне, чем светлых на темном фоне. По-разному

102

обобщаются линейные, размытые (диффузные), мозаичные границы и контуры.

Влияние генерализации изображения на дешифрируемость космических снимков двойственное; оно может быть и положительным и отрицательным. С одной стороны, сильно обобщенное изображение уменьшает возможность высокоточного и детального картографирования по космическим снимкам, в частности вле- чет ошибки дешифрирования. Недаром стремятся к использованию снимков высокого разрешения, а для оценки полноты и достоверности дешифрирования космических снимков прибегают к проверке по аэроснимкам. С другой стороны, обобщенность изображения космического снимка относится к его достоинствам. Во-первых, это свойство позволяет использовать космические снимки для непосредственного составления тематических карт в средних и мелких масштабах без трудоемкого детального многоступенчатого перехода от крупных масштабов карт к мелким, что обеспечивает экономию времени и средств. Во-вторых, оно дает преимущества смыслового, содержательного плана. Оказалось, что на космических снимках выявляются важные объекты, скрытые на снимках более крупных масштабов.

Один из практических выходов исследований по генерализации изображения, космических снимков состоит в определении оптимального соотношения масштабов космических снимков и составляемых по ним карт. Детальность изображения на снимках обычно значительно выше детальности карт соответствующих масштабов; поэтому для картографических работ целесообразно использовать снимки с увеличением, коэффициент которого колеблется для снимков разного типа от 2 до 40. По наиболее реалистичным оценкам, это соотношение составляет в случае сканерных снимков около 2; для фотографических снимков разрыв в масштабах снимков и карт может увеличиваться до 5—20.

Сравнивание дешифрируемости снимков различных масштабов позволило получить общие закономерности географического обобщения воздушных и космических снимков Земли. Изменение масштаба съемки влечет за собой и изменение рисунка. Одни объекты в силу обобщения отходят на второй план или вовсе не изображаются на снимках, другие становятся основными. Анализ аэрокосмических снимков показал, что оптимальными масштабами для дешифрирования являются следующие:

детальные 1:1000—1:2000 — фации;

крупномасштабные 1:2000—1:10 000 — фации;

103

среднемасштабные 1:15 000—1:25 000 — урочища;

мелкомасштабные 1:200 000—1:300 000 — группы урочищ;

сверхмелкомасштабные 1:1 000 000—1:10 000 000 — ландшафты;

глобальные 1:50 000 000 и мельче — географические зоны.

Для количественной оценки степени обобщения контуров су-

ществует несколько критериев. Поскольку изображение контура представляет собой извилистую линию с тем большим количеством извилин, чем меньше она обобщена, можно объективно оценивать степень обобщения контура, сравнивая извилистость на разных изображениях.

Коэффициент общей извилистности (по Н. М. Волкову) под-

L

считывается по формуле: K1 = D, ãäå D — длина прямой линии

между точками À è Â; L — длина извилистой линии между этими точками.

Коэффициент извилистности (по С. А. Николаеву) определя-

l

ется следующим образом: K2 = d, ãäå l — средняя длина дуг изви-

ëèí; d — средняя длина хорд.

Коэффициент изменения площадей при переходе от масштаба

к масштабу равен: KS = S1 .

S2

Линейные резкие контуры при переходе к снимкам более мелкого масштаба изменяют длину крайне незначительно. Существенно укорачиваются длины контуров, проведенные по мозаич- ным границам (от 30 до 50 % длины). В соответствии с этим уменьшается коэффициент общей извилистности, чем меньше, тем извилистее сам контур.

8.2. Методы преобразования аэрокосмического изображения

Высококачественные аэрокосмические снимки обладают чрезвычайно большой информационной емкостью. При визуальном дешифрировании вследствие ограниченной чувствительности зрительного анализатора не удается извлечь всю информацию, содержащуюся на снимке. Задачей преобразования изображения является представление данной информации в более выразительном виде, чтобы облегчить ее наиболее полное извлечение. В настоящее время для преобразования используют фотографические,

104

электронные и цифровые методы, иногда комплексируя их. Преобразование снимка сводится к получению нового изображения с заданными свойствами. Однако следует отметить, что преобразование изображения не добавляет новой информации, а только приводит ее к виду, удобному для дальнейшего использования. Рассмотрим наиболее распространенные виды преобразования аэрокосмического изображения: контратипирование, увеличе- ние, синтезирование, квантование и фильтрацию.

Контратипирование. Обычно для дешифрирования используют не оригинальные снимки — негативы, а их контратипы. Всякий процесс контратипирования связан с потерей информации, тем большей, чем выше разрешающая способность сигнала. Как правило, качество снимков при контратипировании ухудшается в 1,5—2 раза. Это относится прежде всего к изготовлению отпечатков на фотобумаге, изобразительные возможности которой ниже, чем фотоматериала на прозрачной подложке. Но в процессе изготовления контратипов возможно некоторое преднамеренное преобразование изображений и изготовление снимков, наиболее подходящих для дешифрирования тех или иных объектов. Например, при печати возможно уменьшение или усиление контраста изображения. Это осуществляется на электронно-копировальном приборе, в котором источником света является электронно-луче- вая трубка с изменяющейся яркостью светового пятна, сканирующего негатив. Световой поток, пройдя сквозь негатив и позитив, попадает в фотоэлектронный умножитель, который вырабатывает ток, используемый по принципу обратной связи для регулирования яркости печатающего светового пятна.

Увеличение. Наиболее распространенный вид преобразования снимков — их увеличение. В связи с тем что разрешающая способность фотоматериалов гораздо выше, чем глаза, необходимо их увеличение. Например, если разрешающая способность снимка составляет 10—40 мм–1, его необходимо увеличить в 2—8 раз. Только в этом случае можно извлечь всю информацию, содержащуюся в снимке. Увеличение до нескольких десятков раз приведет к появлению зернистости фотоизображения, которая усложняет дешифрирование.

Синтезирование. Цветное изображение можно получить не только путем печати с цветных пленок, но и путем синтезирования цветных изображений по зональным черно-белым снимкам. Более подробно данный процесс изложен в разделе «Многозональная съемка».

Квантование. При изучении объектов, которые на снимках изображаются плавными тональными переходами, может быть

105

полезным квантование изображения по плотности, т. е. представление непрерывного полутонового изображения в виде дискретных ступеней плотности. Для более четкого разделения используют цветное окрашивание ступеней плотности, т. е. придают каждой ступени плотности определенный цвет. Такой квантовый цветной снимок может внешне напоминать карту с ярко раскрашенными контурами. Квантование изображения наиболее просто выполнить электронным методом. Например, исследованиями установлено, что содержание гумуса в почвах тесно коррелирует с распределением на снимке плотности изображения. Таким образом, путем квантования можно составить картограмму содержания гумуса.

Фильтрация позволяет выделить объекты изучения из среды прочих объектов на снимке и тем самым облегчает распознавание этих объектов. В процессе фильтрации избыточная для решения определенной задачи информация отсеивается, а необходимая приводится к виду, упрощающему ее использование. Увеличивая дешифрируемость снимков, фильтрация повышает надежность и скорость дешифрирования, открывает путь к автоматизации дешифрирования. С использованием фильтрации можно решать следующие задачи: преобразование гаммы тонов или цветов; разделение изображения по составным элементам, например выделение линейных объектов; переход от полей с непрерывно и плавно изменяющимися тонами (плоскостью изображения) к ступенча- тому изображению, т. е. выделение нескольких градаций.

Для решения данных задач используются следующие виды фильтрации: оптическая, фотохимическая, фотографическая, метод контурной и двухзональной печати и т. д. С использованием фотографической фильтрации можно достигнуть подчеркивания границ контуров, выявления изменений изображения на серии снимков и выявления линейных элементов определенной ориентации. Приемы оптической фильтрации позволяют выделить линейные объекты определенной ориентировки, например песчаные гряды, овражно-балочную и мелиоративную сеть и др.

9. ИНФОРМАЦИОННЫЕ СВОЙСТВА СНИМКОВ

Каждый снимок, используемый в научно-практических целях, содержит определенные сведения об изучаемом объекте. Для оценки его пригодности как носителя информации он может быть подвергнут как формальному, так и смысловому анализу. В осно-

106

ву формальной оценки объема информации, содержащейся в снимке, может быть положена ее связь с разрешающей способностью. Чем выше разрешающая способность снимков, тем больший объем информации в них содержится. На основе смысловой информации можно определить ценность ее для исследователя. Например, четкое изображение на инфракрасных аэроснимках породного состава лесной растительности указывает на эффективность использования данных снимков для дешифрирования ее видового состава.

Путем дешифрирования аэрокосмических снимков можно получить самые разнообразные сведения, факты. Однако к информации относятся только те из них, которые отвечают поставленной задаче, цели. Содержание и количество извлекаемой из снимков информации обуславливается уровнем наших знаний или заранее сформулированными требованиями, например в виде легенды или перечня условных знаков, которые в конечном счете также отражают наши знания.

Для определения максимального количества информации введено понятие «полная информация», под которой следует понимать ту информацию, которую в каждом конкретном случае можно извлечь из снимков, полученных при оптимальных техниче- ских и погодных условиях съемки, а также масштабе. Однако часто используются снимки, обладающие свойствами, отличными от оптимальных. Содержащееся в них количество информации в общем случае меньше полной информации и составляет оперативную информацию. В оперативную информацию входят те из необходимых сведений, которые можно рассчитывать: полу- чить путем дешифрирования данных снимков. Однако извлеченная информация почти всегда меньше оперативной из-за ошибок дешифрирования.

Ошибки при дешифрировании объектов могут возникать по следующим причинам: при дешифрировании слабоконтрастных объектов; ложное опознавание объектов из-за совпадения дешифровочных признаков (например, известняки и снежники). Однако часто дешифровщик сталкивается с помехами и шумом, которые не представляют ценности для исследователя. К помехам можно отнести наличие бликов, а также изображение на снимках толщи атмосферы, которая в виде дымки накладывается на изображение, или таких атмосферных явлений, как туман, пыльные бури и др.

Хотя деление получаемых сведений на информацию и шум условно, они имеют одну природу и могут взаимно переходить

107

друг в друга. Так, если при фотографической съемке шумом является изображение облаков, закрывающих местность, то при синоптическом дешифрировании космических снимков Земли помехой служит изображение поверхности земли и воды, которое накладывается на изображение облачности.

Качественное разнообразие и количество извлеченной информации в значительной степени определяются свойствами информационного поля снимков. Простота сопоставления снимков ñ

натурой, внешнее совпадение изображения объектов с тем, как мы их видим, определяют наглядность снимков. Объекты узнаются на снимках, если их изображение соответствует непосредственному зрительному образу и если оно хорошо известно из практики, например, облачность.

Наглядность снимков всегда особенно ценилась. Предполагалось, что именно возможность прямого визуального распознавания является главным достоинством снимков с летательных аппаратов. Но по мере развития метода большое значение стали придавать выразительности изображения. Изображение тем выразительнее, чем интенсивнее и контрастнее выделены на нем объекты и явления, являющиеся предметом дешифрирования. Таким образом, выразительность изображения характеризуется простотой дешифрирования объектов и явлений, наиболее существенных для решения поставленной задачи.

Наглядность и выразительность в известном смысле противоположные, взаимоисключающие свойства аэрокосмического изображения. Так, наибольшей наглядностью обладают цветные в натуральных цветах снимки. Меньшая наглядность у цветных спектрозональных снимков, но зато при дешифрировании, например, лесной растительности они имеют большую выразительность.

Наглядность и выразительность изображения связаны с его масштабом, но оптимальные по выразительности и наглядности масштабы снимков не совпадают друг с другом. Наглядность возрастает с укрупнением масштаба.

Выразительность же связана с уровнем обобщенности фотоизображения, поэтому оно оптимально для различных объектов и комплексов в разных масштабах.

Говоря о ценности снимков, обычно говорят об их дешифрируемости. Дешифрируемость снимков определяется как их свойствами, так и с учетом целей дешифрирования. Известно, что одни и те же снимки обладают разной дешифрируемостью по отношению к разным объектам и задачам.

108

Дешифрируемость аэрокосмических снимков — это сумма их свойств, определяющих количество информации, которую можно получить путем дешифрирования снимков для решения данной задачи. Количественно ее можно выразить через отношение оперативной информации (I0), содержащейся в данных снимках, и

полной: R(дешифр.) = I0 .

IÏ

Однако часто для определения дешифрируемости снимков используется относительная дешифрируемость, которая характеризуется через отношение полезной информации (I), которую несет аэроснимок, к полной информации, которая может быть получе-

на по аэроснимку: Dc = I . Это отношение назовем коэффици-

Imax

ентом дешифрируемости. Понятие «полная информация» может быть истолковано по-разному, в соответствии с этим относительная дешифрируемость может характеризовать различные свойства аэроснимков. Если за полную информацию принять максимальную информационную емкость аэроснимков, то коэффициент дешифрируемости будет показывать загруженность аэроснимков бесполезными сведениями, иными словами «уровень шума». По этой же формуле (Dc = I / Imax) может быть вычислена и относительная дешифрируемость отдельных объектов. При соответствующем подходе она позволяет сравнивать аэроснимки, снятые на различной пленке, отпечатанные на различной бумаге и т. д. Таким образом, через коэффициент дешифрируемости выражается ценность аэроснимка как источника информации.

Полнота дешифрирования может быть охарактеризована че- рез отношение использованной (распознанной) полезной информации (I1) ко всей полезной информации, содержащейся в данных аэроснимках:

Gq = II1 .

Полнота дешифрирования в большой мере зависит от подготовки дешифровщиков, их опыта и специальных знаний.

Ïîä достоверностью дешифрирования следует понимать вероятность правильного опознавания или истолкования объектов. Она может оцениваться через отношение количества правильно распо-

n

знанных объектов (n) к сумме всех распознанных (N): Pq = N.

109

10. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ДЕШИФРИРОВАНИЯ АЭРОКОСМИЧЕСКИХ СНИМКОВ

Ïîä дешифрированием аэрокосмических снимков следует понимать получение информации об объектах местности и явлениях географической среды по их фотографическому изображению, основанное на знаниях закономерностей фотографического воспроизведения их оптических и геометрических свойств, а также на знаниях закономерных взаимосвязей пространственного размещения объектов.

Термин «дешифрирование» имеет русское происхождение. В зарубежной литературе применяется термин «интерпретация», что означает толкование, хотя он употребляется как синоним «дешифрирование». Выделяют следующие виды дешифрирования.

Морфографическое дешифрирование заключается в получе- нии необходимой информации об объектах в результате визуального рассматривания аэрофотоснимков или путем использования увеличительных и стереоскопических приборов (лупы, стереоскопы).

Морфометрическое дешифрирование основано на получении количественных характеристик об изучаемых объектах с помощью стереоизмерительных приборов. Основой для морфометрического анализа могут служить: формы контуров и их изрезанность, размеры и соотношение размеров отдельных элементов структуры, их площади и соотношение их между собой, определение формы контуров, протяженности и изрезанности границ, изу- чение ориентирования и встречаемости контуров. Для определения превышения одних точек над другими измеряются разности продольных параллаксов данных точек.

Инструментальное дешифрирование состоит из фотометри- ческого изучения негативов или позитивов, т. е. получение необходимых сведений об объектах и их свойствах путем изучения оптических плотностей фотоизображения с использованием денситометров и микрофотометров. Например, изучение изменения плотности изображения в зависимости от содержания в почве влаги или органического вещества.

Автоматизированное дешифрирование основано на использовании для обработки аэрокосмического изображения современных компьютерных технологий.

110

10.1. Дешифровочные признаки

Природные объекты, изображающиеся на аэрофотоснимках, могут опознаваться и интерпретироваться дешифровщиком по их свойствам, которые находят отражение в дешифровочных признаках этих объектов. Все дешифровочные признаки можно подразделить на две группы: прямые и косвенные.

10.1.1.Прямые признаки дешифрирования

Êпрямым дешифровочным признакам относятся те свойства и характеристики объектов, которые непосредственно изображаются на аэрофотоснимках и могут восприниматься дешифровщиком визуально или с использованием технических средств. К ним относятся тон (черно-белые) или цвет (цветные, спектрозональные) фотоизображения аэрофотоснимков, размер, форма и расчлененность границ, рисунок фотоизображения и падающая тень.

Тон фотоизображения на аэроснимках или оптическая плотность изображения негативов зависит от многих причин и может изменяться в значительных пределах. Непостоянство данного признака связано со следующими факторами: условиями освещенности, цвета, структуры поверхности и физического состояния объекта, типа фотографического материала и условий его обработки, зоны электромагнитного спектра, в котором проводилась аэрокосмическая фотосъемка, и ряда других причин. Однако когда речь идет конкретно о дешифрировании почв, то в первую очередь необходимо установить, под какими угодьями находится данная почва — пахотными, луговыми или лесными. Одна и та же почва распаханных участков и участков под культурой или естественной растительностью будет иметь совершенно различный тон фотоизображения. Далее о постоянстве тона фотоизображения как дешифровочного признака можно вести разговор только

âтом случае, когда речь идет о территории, заснятой в одно и то же время, при одних и тех же погодных условиях съемки и в определенной зоне электромагнитного спектра.

Опытным путем установлено, что человеческий глаз может различать до 25 градаций серого тона, в практических целях ча- ще используется серая шкала тонов от семи до десяти ступеней (табл. 2).

111