Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копылов учебник (doc) / ГЛАВА 4 Магнитная цепь.doc
Скачиваний:
162
Добавлен:
03.08.2018
Размер:
667.65 Кб
Скачать

4.3. Магнитное напряжение зубцовых зон

При расчете магнитных напряжений зубцовых зон принимается попущение, что линии равного магнитного потенциала в попереч­ном сечении машины представляют собой окружности с центром на оси вращения ротора. При этом допущении магнитное напряжение зубцовой зоны статора Fz1 или ротора Fz2 определяется разностью магнитных потенциалов между эквипотенциальными поверхностя­ми (на поперечном сечении — окружностями), проходящими по дну пазов и по поверхности головок зубцов.

Обычно рассматривают поле в одном элементе зубцовой зоны — зубцовом (пазовом) делении tz = πD/ Z. Магнитные со­противления паза и зубца в магнитной цепи машины соединены параллельно, поэтому поток в зубцовом делении распределяется между ними пропорционально проводимостям магнитных сило­вых трубок, проходящих через зубец и паз. Пазы в электрической машине заполнены проводниками и их изоляцией, т. е. средой с магнитной проницаемостью, во много раз меньшей, чем проница­емость стали зубца. Поэтому поток в пазу составляет лишь небо­льшую часть общего потока зубцового деления. Эта часть потока как бы «вытесняется» из зубца в паз. При малом насыщении зуб­цов она очень мала и в расчетах ее не учитывают. При увеличе­нии насыщения зубцов доля потока в пазу возрастает и ее влия­ние начинает сказываться на магнитном напряжении зубцовой зоны Fz.

Рассмотрим вначале расчет магнитного напряжения зубцовой зоны без учета вытеснения части потока в паз. При принятом допу­щении о конфигурации эквипотенциальных линий и в силу симмет­рии зубцовой зоны магнитные силовые линии, проходящие через се­редины оснований зубцов, совпадают с отрезками радиусов (см. рис. 4.1, а и б), поэтому

(4.21)

где Hzx — напряженность магнитного поля в сечении зубца, соответ­ствующем расстоянию hzx от его узкой части; hz — высота зубца (рис. 4.5, а).

Рис. 4.5. К расчету магнитного напряжения зубцовой зоны

При постоянном сечении зубца считают, что напряженность поля в нем Hz постоянна, тогда

Fz = Hzhz (4.21 а)

При переменном сечении зубца Fz можно определить, разделив зубец по высоте на n достаточно малых участков с высотой Δh, в пределах которых изменением Hz пренебрегают. Определив для каждого участка индукцию, напряженность магнитного поля, магнитное напряже­ние и просуммировав последние, находят магнитное напряжение зубца.

Поток, приходящийся на одно зубцовое деление,

Фtz = Bδ tz lδ. (4.22)

Если через bzx обозначить ширину зубца на высоте hzx, то соот­ветствующее активное сечение зубца

Szx = kc lст b zx,

где kc — коэффициент заполнения сердечника сталью; lст — длина магнитопровода без вентиляционных каналов.

Индукция в рассматриваемом сечении зубца (рис. 4.5, б)

(4.23)

Напряженность поля определяется для соответствующей индук­ции по кривым намагничивания для выбранной марки стали.

Проведя несколько таких расчетов для различных сечений зуб­ца, можно для потока ФtZ построить кривую распределения напря­женности поля по высоте зубца (рис. 4.5, в). Площадь, ограничен­ная этой кривой, SACDE определяется в масштабе магнитного напряжения зубца:

Зубцы в электрических машинах могут иметь сложную конфигу­рацию, поэтому такие расчеты выполняют лишь на ЭВМ при необ­ходимости получения уточненных данных, при этом программы расчетов должны учитывать особенности размерных соотношений данной зубцовой зоны.

В практических расчетах оказывается достаточным приближен­ное решение, когда Fz находится по (4.21) для некоторой средней расчетной напряженности Hz и расчетной высоты зубца hz, для которых справедливо .

При плавно изменяющихся сечениях зубцов расчетная напря­женность Hz достаточно точно находится по формуле

Hz = ( Hzmax + 4Hzср + Hzmin). (4.24)

Здесь Hzmax, Hzmin и Hzcp — напряженности поля в поперечных сечениях зубца, которые определяются по индукциям в наиболее уз­ком Szmin, наиболее широком Szmax и среднем по высоте Szcp сечениях зубца, по следующим формулам:

(4.25)

где bzmin, bzmax - наибольшая и наименьшая ширина зубца (см. рис. 4.5, б)

При прямоугольных пазах при Bzmax ≤ 2,0 Тл используется рас­пространенный метод расчета Fz по напряженности Нz1/3, определенной по индукции в сечении на 1/3 высоты зубца от его узкой час­ти (см. рис. 4.5):

Fz = Hz1/3 hz, (4.26)

дающий хорошее совпадение с уточненными расчетами при неболь­шой разнице наибольшего и наименьшего сечений зубцов. При этом площадь прямоугольника ACD'E' со сторонами Hz1/3 и hz равновели­ка площади фигуры ACDE (см. рис. 4.5, в).

В отдельных случаях при большей разнице bzmax и bzmin и боль­ших насыщениях расчет проводится более детально. Зубец делится по высоте на две части, и для каждой из них определяется средняя напряженность поля указанным методом. В этом случае расчетные сечения берутся на высоте

и

от наиболее узкого сечения зубца.

При расчете магнитного напряжения зубцов с резко изменяю­щимся по высоте сечением, например зубцов двухклеточного рото­ра асинхронного двигателя и короткозамкнутого ротора с фигурны­ми пазами, зубцы также делятся по высоте на два участка с плавно изменяющимся сечением, при этом магнитное напряжение зубцов равно сумме магнитных напряжений участков.

Рис. 4.6. Магнитный поток в зубцовом делении

при насы­щении стали зубцов

Влияние местных изменений сечения зубца на изменение магнитного напряже­ния, не распространяющихся на большие, участки по его высоте (углубления в стенках пазов для крепления пазовых клинь­ев, расширения в коронках зубцов и т. п.), в практических расчетах обычно не учи­тывают.

В насыщенной зубцовой зоне доля по­тока в пазу возрастает. Ее можно оценить, не прибегая к полному расчету поля на зубцовом делении, следующим образом.

Обозначим поток в зубце ФZ и поток в пазу Фп (рис. 4.6), тогда поток на зубцо­вом делении на высоте зубца hzx будет ра­вен:

Фtz = Фzx + Фпх (4.27)

Разделив (4.27) на Szx и умножив и разделив второе слагаемое правой части на Sпх = bnx lδ , получим

(4.28)

или

B'zx = Bzx + Bпх (4.29)

где В'zх — расчетная индукция, определимая полным потоком в сече­нии зубца Szx в предположении, что поток в пазу отсутствует; bzx — действительная индукция в сечении зубца Szx, т.е. индукция, опреде­ленная с учетом того, что часть потока вытесняется из зубца в паз; Впх — индукция в сечении паза Sпх, создаваемая вытесненной в паз ча­стью потока.

Так как паз заполнен средой с магнитной проницаемостью μ0 (магнитной постоянной), то

Впх = μ0 Нпх. (4.30)

На основании принятого допущения о конфигурации эквипотен­циальных линий в зубцовой зоне напряженность поля в зубце и в пазу на одной и той же высоте hzx будет одинакова, т. е.

Нпх = Hzx.

Тогда из (4.29) и (4.30) имеем

В'zх = Вzх + μ0 Нzх (4.31)

нли

B'zx = Bzx + μ0 Hzx kпx, (4.32)

где kпx — коэффициент, определяющий отношение площадей попе­речных сечений паза и зубца на высоте hzx:

kпх = (4.33)

В машинах нормального исполнения kп для различных по высоте зубца сечений обычно находится в пределах kп = 0,5 - 2,0.

Для определения действительной индукции в каждом сечении зубца первоначально находят расчетную индукцию по полному по­току зубцового деления:

В'zx = (4.34)

После этого, задаваясь значениями bzx, несколько меньшими, чем B'zx, подбором находят действительную индукцию Bzx и со­ответствующее ей значение Hzx, при которых удовлетворяется ра­венство (4.32). Для облегчения расчета в приложении 2 приведе­ны кривые, позволяющие определить hzx непосредственно по расчетной индукции b'zx с учетом фиксированных значений коэф­фициента kп.

Численные значения kп и μ0 = 4π • 10-7 Гн/м в (4.32) позволя­ют судить о значениях индукции в зубцах, при которых необхо­димо учитывать ответвление потока в паз. Для большинства современных электротехнических сталей при индукции Bz ≤ 1,8 Тл напряженность поля не превышает H ≤ 16000 А/м, следователь­но, при этом уровне насыщения действительная индукция в зуб­цах будет меньше, чем расчетная, лишь на 2—3 % даже при бо­льших значениях kп, поэтому в расчетах этим изменением можно пренебречь.

При индукциях Bz ≥ 1,8 Тл расчет следует проводить с учетом ответвления потока в паз. Естественно, что вопрос о необходимости такого учета решается при определении индукции в каждом из рас­четных сечений зубца в отдельности [6].