Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копылов учебник (doc) / Глава 7 Тепловой и вентиляционный расчет электрических машин.doc
Скачиваний:
201
Добавлен:
03.08.2018
Размер:
1.18 Mб
Скачать

Глава седьмая. Тепловой и вентиляционный расчет

Электрических машин

В активных и конструктивных элементах электрических машин выделяется значительное количество тепла. Мощность тепловых потоков, выделяемых во внутренних объемах машины, такова, что для их отвода в окружающую среду необходимо создавать специальные принудительные системы охлаждения.

7.1. Общие вопросы теплоотдачи в электрических машинах

От того, как рассчитана и реализована система охлаждения электрической машины, во многом определяются ее технико-экономические показатели. К сожалению, в планах подготовки инженеров-электромехаников мало часов отводится вопросам теплофизики, которые по своему научно-техническому содержанию мало уступают электродинамике. Поэтому в курсе проектирования электрических машин используются упрощенные тепловые и вентиляционные расчеты, а на электромеханических заводах и НИИ есть группы инженеров-теплофизиков, занимающихся тепловыми и вентиляционными расчетами.

Тепловую напряженность машины можно оценить по мощности потерь, приходящейся на единицу наружной поверхности. Однако полная тепловая схема машины представляет собой сложную многомерную тепловую систему. Температурные поля в общем случае, изменяются по каждой из трех пространственных координат и не остаются постоянными с течением времени.

Для описания трехмерного температурного поля машины обычно используют уравнение теплового состояния в общем виде

(7.1)

где — температура точки тела в заданный момент;— пространственные координаты;время.

Тепловая энергия, выделяемая на элементах машин при ее работе, может вызывать недопустимое повышение температуры активных и конструктивных элементов машины, снижение электрической и механической прочности изоляции обмоток, уменьшение времени безотказной работы машины. Поэтому определение тепловых потоков, расчет изменения температуры в пространстве внутреннего объема и на поверхностях охлаждения машины являются важными разделами проектирования электрической машины. На основе этого расчета оценивается тепловое состояние машины, выбираются такие тепловые и вентиляционные схемы и способы ее охлаждения, при которых превышение температуры частей электрической машины не превосходит пределов допускаемых значений, установленных ГОСТ 183—74 (табл. 7.1).

Температура частей электрической машины зависит от температуры охлаждающей среды. В связи с неизбежными колебаниями температуры охлаждающей среды принято тепловую напряженность частей электрической машины характеризовать превышением их температуры над температурой охлаждающей среды

, (7.2)

где — температура рассматриваемой части электрической машины;— температура охлаждающей среды.

Номинальные данные электрической машины (мощность, напряжение, ток, частота вращения, коэффициент мощности, КПД и др.) обычно относятся к работе машины на высоте до 1000 м над уровнем моря при температуре окружающей среды до +40° C и охлаждающей воды до +30° C, но не выше +33° C, если в стандартах или технических условиях на проектируемую машину не указаны другие требования [19].

При длительной работе электрической машины влияние на тепловой режим и нагрев ее отдельных частей оказывают изменения напряжения сети, частоты, нагрузки и другие факторы.

Согласно ГОСТ 183—74 на общие технические требования к электрическим машинам установлены восемь номинальных режимов работы, из которых наиболее часто встречаются следующие: 1) продолжительный (условное обозначение S1); 2) кратковремен­ным (S2) с длительностью рабочего периода 10, 30, 60 и 90 мин; 3) повторно-кратковременный (S3) с относительной продолжительностью включения ПВ-15, 25, 40 и 60 % длительности одного цикла работы, равного 10 мин; 4) перемежающийся с чередованием неизменной номинальной нагрузки и холостого хода (S6) без выключе­ния машины с продолжительностью нагрузки ПН-15, 25, 40 и 60 % длительности одного цикла работы, равного 10 мин.

Предельная допускаемая температура для какой-либо части электрической машины определяется как сумма допускаемого превышения температуры, взятой из табл. 7.1, и предельной допускаемой температуры охлаждающей среды +40° C, принятой для электрических машин общего назначения.

Предельная допускаемая температура подшипников не должна превышать следующих значений: для подшипников скольжения 80о C (температура масла не должна быть при этом выше 65° С), для подшипников качения 100° С.

Таблица 7.1. предельно допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды +40о C и высоте над уровнем моря не более 1000 м (по ГОСТ 183—74)

п/п

Часть электрических машин

Изоляционный материал (по ГОСТ 8865—87)

А

Е

В

С

H

методом термометра

методом сопротивления

методом температурных индикаторов, уложенных в паз

методом термометра

методом сопротивления

методом температурных индикаторов, уложенных в паз

методом термометра

методом сопротивления

методом температурных индикаторов, уложенных в паз

методом термометра

методом сопротивления

методом температурных индикаторов, уложенных в паз

методом термометра

методом сопротивления

методом температурных индикаторов, уложенных в паз

1

Обмотки переменного тока машин мощностью 5000 кВ·А и выше или с длиной сердечника 1 м и более

60

60

70

70

80

80

100

100

125

125

2

Обмотки:

50

60

65

75

70

80

85

100

105

125

а) обмотки переменного тока машин мощностью 5000 кВ·А с длиной сердечника менее 1 м

б) обмотки возбуждения машин постоянного и переменного тока с возбуждением постоянным током, кроме указанных в пп. 3,4 и 5 настоящей таблицы

в) якорные обмотки, соединенные с коллектором

3

Обмотки возбуждения неявнополюсных машин с возбуждением постоянным током

90

100

135

4

Однорядные обмотки возбуждения с оголенными поверхностями

65

65

80

80

90

90

110

110

135

135

5

Обмотки возбуждения малого сопротивления, имеющие несколько слоев и компенсационные обмотки

60

60

75

75

80

80

100

100

125

125

6

Изолированные обмотки, непрерывно замкнутые на себя

60

75

80

100

125

7

Неизолированные обмотки, непрерывно замкнутые на себя

Превышение температуры этих частей не должно достигать значений, которые создавали бы опасность повреждения изоляционных или других смежных материалов самих элементов и соседних частей

8

Сердечники и другие стальные части, не соприкасающиеся с изолированными обмотками

9

Сердечники и другие стальные части, соприкасающиеся с изолированными обмотками

60

60

75

75

80

80

100

100

125

125

10

Коллекторы и контактные кольца незащищенные и защищенные

60

70

80

90

100

Измерение температуры отдельных частей электрической маши­ны при тепловых испытаниях осуществляют методами термометра, сопротивления (только для обмоток) и температурных индикаторов.

При измерениях методом термометра согласно ГОСТ 11828—86 температура фиксируется термометром, прикладываемым к доступным местам.

Для определения средней температуры обмоток изготовленных из меди, используют следующую формулу:

, (7.3)

где — сопротивление обмотки в нагретом состоянии, Ом;сопротивление обмотки в холодном состоянии, Ом; — температура обмотки в холодном состоянии,оС.

Для обмоток, изготовленных из алюминия, вместо числа 235 следует подставить число 245.

Согласно ГОСТ 20459—87 обозначения способов охлаждения электрических машин, принятые в технической документации всех видов, состоит из латинских букв IC — первых букв английских слов International Cooling и следующих за ними буквы, характеризующей вид хладагента (А — воздух, Н — водород, N — азот, С — диоксид углерода, Fr — фреон, W — вода, Uмасло, Кг — керосин) и двух цифр: первая условно обозначает устройст­во цепи для циркуляции хладагента, вторая — способ перемеще­ния хладагента. Условное обозначение устройства цепи циркуля­ции содержит 10 цифр (от 0 до 9): 0 — свободная циркуляция наружного воздуха; 1—3 — охлаждение при помощи проводящей (1), отводящей (2) или обеих труб (3); 4 — охлаждение наружной поверхности с использованием окружающей среды; 5,6 — охлаждение окружающей средой при помощи встроенного (5) или пристроенного (6) теплообменника; 7, 8 — охлаждение при помощи встроенного (7) или пристроенного (8) охладителя; 9 — охлаждение при помощи охладителя, установленного отдельно от машины. Способы перемещения хладагента обозначаются второй циф­рой: 0 — свободная конвекция; 1 — самовентиляция; 2 и 3 — перемещение хладагента встроенным или пристроенным устройством, установленным непосредственно на валу машины (3) или связанным с валом через зубчатую или ременную передачу (2); 5 и 6 — то же, при независимом устройстве; 7 — перемещение хладагента осуществляется отдельным устройством [15, 16].

Если в машинах применяют двухконтурные системы охлаждения, то способы охлаждения обозначают, начиная с цепи более низкой температуры. Например, закрытая машина с водородным охлаждением и встроенным водяным охладителем, циркуляция воды, в охладителе которой осуществляется отдельным и независимым от охлаждаемой машины насосом или от водопроводной сети, имеет обозначение IC37H71. Закрытая машина, которая имеет обмотку статора с непосредственным водяным охлаждением и обмотку ротора, охлаждаемую водородом, и циркуляция воды в обмотке статора и которой осуществляется отдельным насосом, обозначается так: ICW87 — обмотка статора, H71 — обмотка ротора.

Самой простой схемой охлаждения, которая применяется преи­мущественно в машинах мощностью до 1 кВт, является схема с естественной вентиляцией без применения особых средств для повыше­ния интенсивности охлаждения.

Большинство электрических машин общего назначения, за иск­лючением турбо- и гидрогенераторов, а также синхронных компенсаторов охлаждаются воздухом и имеют принудительную схему вентиляции. В случае принудительной вентиляции цепь охлаждения машины может быть:

разомкнутой — воздух поступает из окружающей среды, проходит каналы тракта охлаждения машины и выбрасывается снова в окружающую среду;

замкнутой — поток охлаждающего воздуха не связан с окружа­ющей средой, а циркулирует по замкнутому контуру, включающему в себя и внутренний объем закрытой машины. При замкнутой вентиляции охлаждающий воздух отдает свою теплоту либо воде в специальном газоохладителе, либо корпусу машины через его внут­реннюю поверхность, как это осуществляется, например, в асинх­ронных двигателях закрытого исполнения, обдуваемых наружным вентилятором.

В зависимости от направления движения воздуха (газа) внутри машины различают аксиальную, аксиально-радиальную и радиаль­ную схемы вентиляции.

Если электрическая машина имеет схему самовентиляции, то напор в вентиляционной системе создастся вентилятором, уста­новленным на валу машины. Эта схема вентиляции подразделяет­ся на два класса: нагнетательную и вытяжную. При нагнетатель­ной схеме вентиляции охлажденный газ под воздействием избыточного давления, создаваемого нагнетателем, поступает в вентиляционные каналы активной зоны машины. При вытяжной схеме вентиляции охлаждающий газ поступает в вентиляционные каналы машины под действием разряжения, создаваемого вентилятором.

Вытяжная вентиляция обладает тем преимуществом, что газ по­ступает в машину без предварительного его подогрева вентилято­ром, что несколько снижает превышение температуры обмоток.

В практике электромашиностроения применяют как нагнетательные, так и вытяжные схемы вентиляции, которые по числу струй бывают однострунными и многоструйными. При многоструйной схеме вентиляции каналы каждой струи имеют независимые выходы подогретого воздуха в сборную зону перед нагнетателем.

Схему принудительной вентиляции с помощью независимого вентилятора применяют в машинах с широким диапазоном регулирования частоты вращения, когда система самовентиляции при малых частотах вращения ротора не является эффективной. По этой схеме выполняют отдельные модификации асинхронных двигателей; серии 4А и машин постоянного тока серии 2П.

По способу отвода тепла от тепловыделяющих элементов электрических машин различают схемы косвенного и непосредственного охлаждения: в первом случае отвод тепла осуществляется открытых поверхностей активных частей машины, во втором хладагент по специальным каналам подводится к проводникам обмоток машины, отбирая тепло непосредственно от обмоток.

Все электрические машины общего назначения выполняются системе воздушного косвенного охлаждения.

Особенности конструктивного исполнения отдельных с воздушным косвенным охлаждением определили и их схему вентиляции: крупные машины постоянного тока и синхронные двигатели выполняются преимущественно с радиальной схемой вентиляции. Асинхронные машины большой мощности имеют радиальную, аксиальную и аксиально-радиальную схемы.

С ростом единичной мощности электрических машин возрастают удельные потери в объеме машины, поэтому воздушные системы охлаждения становятся неэффективными и для охлаждения турбо- и гидрогенераторов и синхронных компенсаторов применяют схемы косвенного охлаждения водородом совместно со схемами непосредственно жидкостного охлаждения. В качестве хладагента в этих случаях используют воду, которая обеспечивает самую высокую по сравнению с другими жидкостями эффективность охлаждения. Схема непосредственного водяного охлаждения обмоток статора и ротора находит применение в конструкциях мощных турбо- и гидрогенераторов.

Система непосредственного водяного охлаждения обычно сочетается с системой косвенного газового охлаждения активных частей машины [16, 17].