Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по КСЕ4 / Лекция 7.doc
Скачиваний:
29
Добавлен:
02.05.2014
Размер:
100.86 Кб
Скачать

Концепции современного естествознания Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики

1. Идеальный цикл Карно и сущность II начала термодинамики 2. Энтропия. Термодинамическая трактовка 3. Энтропия. Вероятностная трактовка

Контрольные вопросы Литература

Второе начало термодинамики играет важнейшую роль в понимании процессов и явлений природы.

Впервые II Начало было, фактически, сформулировано пусть в несовершенной форме, еще в начале 19-го века и в этом виде понятно любому человеку, поскольку он сталкивается с ним в своем повседневном опыте.

Так, в 1811 г. Жан-Батист Фурье сформулировал закон теплопроводности, согласно которому количество теплоты, которое переносится в единицу времени через единицу площади поверхности вдоль какого-либо направления (т.е. через единицу длины), прямо пропорционально величине изменения температуры вдоль этого направления.

,

где q– поток тепла в направлениихна единицу длины за единицу времени,j(x,y,t)– распределение температуры.

При этом количество теплоты переносится от участков с большей температурой в направлении участков с меньшей температурой и никогда наоборот..Теплопроводность приводит к все большему выравниванию температур до тех пор, пока распределение температуры во всех точках пространства рассматриваемой изолированной системы не станет одинаковым.

Фактически, закон теплопроводности уже выходил за рамки классической ньютоновской механики по той причине, что описывал необратимыйпроцесс, а все законы ньютоновской механики являютсяобратимыми, инвариантными относительно направления времени. Так в науку вошло понятие необратимости, дальнейшее развитие которого связано с работой С. Карно по исследованию действия паровых машин.

К началу документа

1. Идеальный цикл Карно.

С. Карно, наблюдая за действием паровой машины, обратил внимание, что используемый для перемещения цилиндра пар затем выпускается в среду с меньшей температурой, где он превращается в воду (т.н. конденсат) и далее не используется. Карно задумался о возможности использования отработанного конденсата в котел, где он вновь нагреется, превратится в пар, который при своем дальнейшем расширении вновь совершит работу над поршнем. Таким образом, вода пройдет полный цикл. Однако такой непрерывный циклический процесс возможен лишь при наличии двух нагревателей: нагревателя при высокой температуре Т1и холодильника при Т2.

Рассмотрим схематично идеальный цикл Карно. Он состоит из двух изотермических и двух адиабатических процессов.

Изотермический процесс.Пусть газ, находящийся над поршнем в цилиндре, находится в равновесии с окружающей средой. Будем медленно выдвигать поршень из цилиндра, не нарушая равновесия в каждый данный момент и сохраняя постоянной температуру газа. Этот процесс соответствует закону Бойля-МариоттаPV=const.(на рисунке – переход из точки 1 в точку 2). Заметим, что если опять,медленновозвращая поршень в исходной положение, сжимать газ, система из точки 2 вернется в точку 1, так как изотермический процесс обратим [1].

Адиабатический процесс.Как известно, это процесс без теплообмена с окружающей средой, т.е. процесс в некотором идеально теплоизолированном сосуде. Этот процесс тоже очень медленный, так что температура во время сжатия или расширения выравнивается во всех точках, но меняется в зависимости от объема.

Уравнение адиабатического процесса PV g = const, гдеg = cp/cv.

Рис.1

Цикл Карно состоит из двух изотермических и двух адиабатических процессов, которые образуют на графике в координатах PV криволинейный четырехугольник (см. рис. 1а). Адиабаты круче изотерм – они образуют боковые линии. Схемы соответствующих процессов приведены на рис. 1б.

Процесс (1)-(2): от нагретого тела с температурой Т1 тепло подводится (при постоянной температуре) к газу, который расширяется при постоянной температуре.

Процесс (2)-(3):газ расширяется в условиях полной теплоизоляции сосуда от окружающей среды.

Процесс (3)-(4):тепло отнимается при изотермическом процессе и отдается холодному телу с температурой Т2.

Процесс (4)-(1), замыкающий цикл соответствует адиабатическому сжатию.

Пусть в процессе (1)-(2) газ получает от холодильника теплоту Q1, а холодильнику отдает теплотуQ2. Тогда за весь цикл он получит теплотуQ1 – Q2 , равную совершенной работеА.

Тогда КПД теплового двигателя, работающего по циклу Карно:

КПД = A1/Q1 = (Q1 – Q2)/Q1 . (1)

Можно показать, что Q1/Q2 = T1/T2(для случая идеального газа).

Соотношение полученного тепла к отданному теплу равно отношению абсолютных температур нагревателя и холодильника.

Тогда КПД = (Q1 – Q2)/Q1 = 1 – Q2/Q1 = 1 – T2/T1 = (T1 – T2)/T1. (2)

Получается, что в случае цикла Карно КПД при превращении тепла в работу зависит только от температуры нагревателя и холодильника (таким образом, процесс не зависит ни от количества используемого газа, ни от начальных значений давления или объема).

Вспомним, что площадь, ограниченная криволинейным четырехугоугольником, изображающим идеальный цикл Карно, равна полной работе, совершаемой газом,а площадь под кривыми (1)-(4) и (4)-(3) - работе, совершеннойнад газом, т.е. затраченной.

Сущность второго начала термодинамики. Возможность построения машины без холодильника, т.е. с КПД = 1, которая могла бы превращать в работу всю теплоту, заимствованную у теплового резервуара, не противоречит закону сохранения энергии. Такая машина, по сути, была бы аналогична perpetuum mobile (вечному двигателю), так как могла бы производить работу за счет практически неисчерпаемых источников энергии, содержащихся в воде морей, океанов, атмосфере и недрах Земли. Такую машину У. Оствальд (1853-1932) назвалperpetuum mobile II рода( в отличие отperpetuum mobile I рода– вечного двигателя, производящего работу из ничего). Карно же исходил из невозможности вечного двигателя, опираясь на многочисленные опытные факты и утверждая, чтов любом непрерывном процессе превращения теплоты от горячего нагревателя в работу непременно должна происходить отдача тепла холодильнику.

Таким образом, здесь проявляется общее свойство теплоты – уравнивание температурной разницы путем перехода от теплых тел к холодным. Это положение Клаузиус и предложил назвать «Вторым началом механической теории теплоты». Если Первое начало термодинамики утверждает закон сохранения энергии, ее баланс, то Второе начало определяет направления превращения энергии, и если в предыдущей лекции Первому началу была сопоставлена роль «бухгалтера», то Второе начало выступает скорее как «диспетчер», определяющий направление энергетических потоков.

К началу документа

Соседние файлы в папке Лекции по КСЕ4