Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа №26.doc
Скачиваний:
7
Добавлен:
03.04.2015
Размер:
121.86 Кб
Скачать

Гамма-излучение ядер.

Большинство атомных ядер, возникающих при α – и β – распадах, образуются в возбужденных состояниях. Переход ядра из возбужденного состояния в основное или промежуточное энергетическое состояние может происходить путем излучения γ – квантов, либо путем излучения других каких-либо частиц. Энергетический спектр γ – лучей всегда дискретный, что является следствием дискретности энергетических уровней ядра.

После α – распада обычно излучаются j -лучи с энергией не выше 0,5 МэВ. Бета - распад сопровождается излучением /-квантов с энергией примерно от 0,01 до 10 МэВ.

Нейтронное излучение.

Нейтроны в настоящее время получают путем осуществления ядерных реакций, в процессе протекания которых излучаются названные частицы. Можно выделить три способа получения нейтронов.

Первый способ связан с применением α – либо γ – активных изотопов. В этом случае при облучении некоторых легких ядер протекают реакции с излучением нейтронов.

При использовании α – частиц осуществляют реакции типа Ве9(α,n)С12; B10(α,n)N13. При использовании γ – лучей осуществляют реакции типа Х(γ,n)Х; Ве9(γ,n)Ве8.

Второй способ получения нейтронов заключается в осуществлении ядерных реакций под действием ускоренных протонов или дейтронов: Li7(p,n)Be7; H3(d,n)He4; H2(d,n)He3

Третий способ получения нейтронов связан с использованием ядерного реактора. Заметим, что в этом случае получают очень высокие значения потока частиц ~ 1018 нейтрон/см2 сек.

Наиболее широкое применение в настоящее время находят нейтронные источники, в которых используется механическая смесь Be и одного из следующих α – активных изотопов: Ро, Pu, Ra. В таких источниках α – частицы поглощаются ядрами Be, в результате протекает ядерная реакция с образованием нейтронов:

Основные дозиметрические единицы

Поглощенная доза излучения D определяется отношением энергии dW излучения, поглощенной веществом, к массе поглощающего вещества [2]:

(9)

Единицей поглощенной дозы является грэй (Гр); 1 Гр=1 Дж/кг. Специальная единица поглощенной дозы – рад; 1 рад=0,01 Гр. При расчете поглощенной дозы принимают следующий массовый состав мягкой биологической ткани: 76,2 % кислорода, 11,1% углерода, 10,1% водорода, 2,6% азота.

Для сравнения биологических эффектов различных видов излучения служит единица бэр: 1 бэр — единица дозы любого вида ионизирующего излучения в биологической ткани, которая создает тот же биологический эффект, что и доза 1 рад рентгеновского или гамма-излучения. Доза в бэрах связана с дозой в радах коэффициентом качества К, который учитывает неблагоприятность биологических последствий облучения человека в малых дозах следующим равенством:

Deq=DK

(10)

Экспозиционная доза X - отношение полного заряда dQ ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов, к массе dm ионизированного воздуха:

(11)

Единица экспозиционной дозы 1Кл*кг-1. Специальной единицей экспозиционной дозы является рентген (Р): 1Р=2,58*10-4 Кл/кг. Рентген – единица экспозиционной дозы рентгеновского или гамма-излучения, при прохождении которого через 0,001293г воздуха (масса 1 см3 атмосферного воздуха при нормальных условиях) в результате завершения всех ионизационных процессов в воздухе создаются ионы, обусловливающие одну электростатическую единицу количества электричества каждого знака (1Кл=3*109 электростатических единиц электричества).

Мощность экспозиционной дозы определяется скоростью возрастания экспозиционной дозы:

(12)

Для оценки радиационной опасности используют эквивалентную дозу Deq. Эта величина введена для оценки радиационной опасности хронического облучения излучением произвольного состава и равна

(13)

где индексы i = 1,2,... относятся к компонентам излучения разного качества.

Предельно допустимая доза (ПДД) - наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала (категории А) неблагоприятных изменений, обнаруживаемых современными методами.

Мощность экспозиционной дозы и экспозиционная доза X гамма – излучения точечного источника без защиты определяются выражениями

(14)

(15)

(16)

(17)

где А - активность источника, выражаемая в микрокюри (кюри –специальная единица активности, 1 Ки – 3,7*1010 ядерных превращений в секунду); kγ – ионизационная гамма – постоянная изотопа, Р*см2/(ч*мкКи); R – расстояние от источника до детектора, см; mRaгамма – эквивалент источника – условная масса точечного источника 226Ra, создающего на данном расстоянии такую же мощность экспозиционной дозы, как и данный источник. Специальной единицей гамма – эквивалента является килограмм – эквивалент радия; 1 кг-экв радия на расстоянии 1 см в воздухе создает мощность экспозиционной дозы 2,33 кР/с или 8,4*106 Р/ч; соответственно 1 мг-экв радия – 2,33-10-3 Р/с или 8,4 Р/ч.

Допустимые условия работы с источниками излучения требуют, чтобы экспозиционная доза была меньше или равна предельно допустимой:

(18)

Нормами радиационной безопасности для персонала установлена предельно допустимая мощность экспозиционной дозы 100 мР в неделю или для 36 – часовой недели 2,8 мР/ч. Допустимые условия работы персонала с источником определяются соотношением:

(19)

mRa выражен в мг-экв радия [2].