Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
инфа ответы 2семестр (Восстановлен).docx
Скачиваний:
10
Добавлен:
20.04.2019
Размер:
1.82 Mб
Скачать

26 Численные методы восстановления функций: постановка задачи.

П остановка задачи интерполирования.

На отрезке (a, b) в n+1 точке (узлах интерполяции) a=X0 < X1 < X2 <...< Xn=b

заданы значения Yi функцииY=f(X). Требуется подобрать вспомогательную функцию (x) (интерполяционную функцию или интерполянту) простого вида, для которой:

  1. (Xi)=Yi при i=0,1,2,3,...,n

  2. (X)f(X) при всех остальных значениях X[a,b].

Основной целью процесса интерполирования является получение быстрого и экономичного алгоритма вычисления приближенного значения функции во всех точках отрезка [a,b].

Ф ормулировка задачи не является строго математической, поскольку в нее входят, например, слова "функция простого вида", или (X)f(X). Главные вопросы здесь -как выбрать интерполянту и как оценить точность приближения функции f(X) на отрезке [a,b].

Ответ на вопрос о точности, без каких-либо дополнительных ограничений на функцию f(X), дать нельзя, поскольку легко привести примеры совершенно непохожих друг на друга непрерывных функций, которые задаются таблично одинаковым способом. Поэтому при оценке точности налагаются ограничения на гладкость функции, что мы и увидим позже.

Рассмотрение вопроса о виде интерполирующей функции (X) привело к созданию целой теории приближений, весьма сложной и большой по объему. Поэтому мы ограничимся рассмотрением лишь простейших случаев: линейной интерполяции и интерполяции многочленами.

27 Численные методы восстановления функций: интерполяция полиномом Лагранжа. Интерполяционные формулы Лагранжа и Ньютона.

Для каждой функции , определенной на [a,b], и любого набора узлов x0, x1,....,xn( xi [a,b], xi xj при i j ) среди алгебраических многочленов степени не выше n существует единственный интерполяционный многочлен Ф(x), который может быть записан в форме:

, (4.1)

где - многочлен n-ой степени, обладающий следующим свойством:

Для интерполяционного полинома многочлен имеет вид:

(4.3)

Этот многочлен (4.1) и решает задачу интерполирования и называется интерполяционным полиномом Лагранжа.

При решении задачи интерполяции величина n называется порядком интерполирующего полинома. При этом, как видно из формул (4.1) и (4.5), число узлов интерполирования всегда будет равно n+1 и значение x, для которого определяется величина , должно лежать внутри области определения узлов интерполяции т.е.

. (4.6)

В некоторых практических случаях общее известное число узлов интерполяции m может быть больше, чем порядок интерполирующего полинома n.

В этом случае, прежде чем реализовывать процедуру интерполяции согласно формуле (4.5), необходимо определить те узлы интерполяции, для которых справедливо условие (4.6). При этом следует помнить, что наименьшая погрешность достигается при нахождении значения x в центре области интерполяции. Для обеспечения этого предлагается следующая процедура:

  1. После ввода в программу значения величины х необходимо проверить условие x0x xm, где x0 и xm – начальное и конечное значение узловых точек интерполяции.

  2. При выполнения предыдущего условия начинается поиск области интерполяции, для чего находим первое xi такое, для которого выполняется условие xi > x, при этом номер i будет соответствовать середине интервала интерполяции. Для определения области интерполяции ее левая граница будет начинаться с номера , а заканчиваться узлом с номером .

  3. После выполнения пунктов 1 и 2 программируется формула

Основное назначение интерполяции – это вычисление значений табулированной функции для неузловых (промежуточных) значений аргумента, поэтому интерполяцию часто называют «искусством чтения таблиц между строками».