Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема № 8 введение в радиобиологию..doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
229.89 Кб
Скачать

Реакции клеток на облучение

Клетки представляют собой основные ячейки жизни, в которых формируются начальные эффекты лучевых воздействий, приводящие к поражениям, проявляющимся позднее на более высоких уровнях биологической организации – тканевом, органном, системном, организменном. Поэтому в радиобиологии особое внимание уделяют процессам, развивающимся после облучения именно в клетках.

В живой клетке постоянно осуществляется обмен веществ с внешней средой, между отдельными внутриклеточными структурами. Молекулярные повреждения, возникшие в клетках на начальных стадиях действия ионизирующих излучений, изменяют ход обменных процессов, осуществляющихся при участии поврежденных структур. Поскольку локализация и характер первичных повреждений в той или иной молекулярной структуре клетки носят в значительной степени вероятностный характер, весьма разнообразны и связанные с ними изменения метаболизма.

Нарушение метаболических процессов в свою очередь приводит к увеличению выраженности молекулярных повреждений в клетке.

Этот феномен получил наименование биологического усиления первичного радиационного повреждения. Однако, наряду с этим, в клетке развиваются и репарационные процессы, следствием которых является полное или частичное восстановление структур и функций.

Биологическое усиление радиационного поражения

Наиболее значимые для судьбы облученной клетки изменения нуклеинового обмена, белкового обмена, окислительного фосфорилирования.

Практически сразу после облучения в делящихся клетках замедляется синтез ДНК. Активируются эндо- и экзонуклеазы, вследствие чего повышается ферментативный гидролиз молекул ядерной ДНК; увеличение проницаемости внутриклеточных мембран способствует поступлению ферментов во внутриядерное пространство, повышает доступность я ной ДНК для ферментативной атаки. Распад ДНК приводит к повышению содержания в тканях полидезоксинуклеотидов. В крови и моче облученных нарастает количество нуклеотидов и продуктов их разрушения - азотистых оснований, нуклеозидов, мочевой кислоты и др.

Синтез РНК снижается в меньшей степени, чем ДНК. Отчасти нарушение синтеза РНК зависит от повреждения матричных структур ДНК.

Повреждение мембран лизосом и выход за их пределы протеаз способствуют в ранние сроки после облучения активации процессов протеолиза. Эта активация проявляется повышением уровня свободных аминокислот и других аминосоединений в тканях и жидкостях организма, аминоацидурией, развитием отрицательного азотистого баланса. повышается активность протеолитических ферментов в крови, тканях, моче. Нарушается активность ингибиторов протеаз. Активация протеолиза не всегда является выражением процессов, происходящих в сохранивших жизнеспособность клетках. Она может отражать завершение деструкции уже погибших клеток.

Биосинтез белка нарушается мало. Однако продолжающийся синтез белка в сочетании с глубоким снижением или даже прекращением синтеза ДНК может привести к серьезным нарушениям структуры и пространственной организации нуклеопротеидных комплексов. Распад комплекса ДНК — гистон облегчает доступ мутагенов к освобожденным от связей с белком участкам ДНК.

Интенсивность потребления кислорода существенно не изменяется. Однако в первые часы после облучения иногда наблюдаются признаки тканевой гипоксии. В высоко радиочувствительных клетках уже после облучения в сравнительно невысоких дозах отмечается нарушение окислительного фосфорилирования, проявляющееся снижением коэффициента Р/0.

В клетках кроветворных тканей угнетение окислительного фосфорилирования выявляется уже через 2—4 ч после облучения, параллельно с глубоким распадом ДНК. По мнению ряда исследователей, нарушение синтеза АТФ является пусковым звеном в послелучевой деградации ДНК. Нарушение синтеза макроэргов может сказаться и на развитии восстановительных процессов, в частности на работе системы ферментов репарации ДНК. Таким образом, подавление окислительного фосфорилирования играет заметную роль в радиационном поражении генетических структур клетки.

Тканевое дыхание и окислительное фосфорилирование в клетках перенесшего облучение организма, как правило, довольно быстро восстанавливаются.