Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические основы 3.doc
Скачиваний:
30
Добавлен:
27.11.2019
Размер:
325.12 Кб
Скачать

Инверсии

Когда мы работаем в модульной арифметике, нам часто нужно найти операцию, которая позволяет вычислить величину, обратную заданному числу. Мы обычно ищем аддитивную инверсию (оператор, обратный сложению) или мультипликативную инверсию (оператор, обратный умножению).

Аддитивная инверсия

В Z2 два числа a и b аддитивно инверсны друг другу, если b = n – a. Например,

a + b 0(mod n)

В Zn аддитивная инверсия числу a может быть вычислена как b = n – a. Например, аддитивная инверсия 4 в Z10 равна 10 – 4 = 6.

В модульной арифметике каждое целое число имеет аддитивную инверсию. Сумма целого числа и его аддитивной инверсии сравнима с 0 по модулю n.

Обратите внимание, что в модульной арифметике каждое число имеет аддитивную инверсию, и эта инверсия уникальна; каждое число имеет одну и только одну аддитивную инверсию. Однако инверсия числа может быть непосредственно тем же самым числом.

Пример 2.21

Найдите все взаимно обратные пары по сложению в Z10.

Решение

Даны шесть пар аддитивных инверсий — (0, 0), (1, 9), (2, 8), (3, 7), (4, 6) и (5, 5). В этом списке 0 — инверсия самому себе; так же и 5. Обратите внимание: аддитивные инверсии сложения обратны друг другу; если 4 — аддитивная инверсия 6, тогда 6 — также аддитивная инверсия числу 4.

Мультипликативная инверсия

В Zn два числа a и b мультипликативно инверсны друг другу, если

a × b 1(mod n)

Например, если модуль равен 10, то мультипликативная инверсия 3 есть 7. Другими словами, мы имеем .

В модульной арифметике целое число может или не может иметь мультипликативную инверсию. Целое число и его мультипликативная инверсия сравнимы с 1 по модулю n.

Может быть доказано, что a имеет мультипликативную инверсию в Zn, если только НОД(n, a) = 1. В этом случае говорят, что a и n взаимно простые.

Пример 2.22

Найти мультипликативную инверсию 8 в Z10.

Решение

Мультипликативная инверсия не существует, потому что . Другими словами, мы не можем найти число между 0 и 9, такое, что при умножении на 8 результат сравним с 1 по mod 10.

Пример 2.23

Найти все мультипликативные инверсии в Z10.

Решение

Есть только три пары, удовлетворяющие условиям существования мультипликативной инверсии: (1, 1), (3, 7) и (9, 9). Числа 0, 2, 4, 5, 6 и 8 не имеют мультипликативной инверсии.

Мы можем проверить, что

(1 × 1) mod 10 = 1 (3 × 7) mod 10 = 1 (9 × 9) mod 10 = 1

Пример 2.24

Найти все мультипликативные обратные пары в Z11.

Решение

Мы имеем семь пар: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 9) и (10, 10). При переходе от Z10 к Z11 число пар увеличивается.

Целое число a в Zn имеет мультипликативную инверсию тогда и только тогда, если НОД (n, a) = 1(mod n)

Расширенный алгоритм Евклида, который мы обсуждали ранее, может найти мультипликативную инверсию b в Zn, когда даны n и b и инверсия существует. Для этого нам надо заменить первое целое число a на n (модуль). Далее мы можем утверждать, что алгоритм может найти s и t, такие, что . Однако если мультипликативная инверсия b существует, НОД (n, b) должен быть 1. Так что уравнение будет иметь вид

(s × n) + (b × t) = 1

Теперь мы применяем операции по модулю к обеим сторонам уравнения. Тогда мы будем иметь:

(s × n + b × t) mod n =1 mod n

[(s × n) mod n] + [(b × t) mod n] = 1 mod n

0 + [(b × t) mod n ] = 1

(b × t) mod n =1 Это означает, что t – это мультипликативная инверсия b в Zn

Обратите внимание, что на третьей строке — 0, потому что, если мы делим , частное — s, а остаток — 0.

Расширенный алгоритм Евклида находит мультипликативные инверсии b в Zn, когда даны n и b и НОД (n, b) = 1. Мультипликативная инверсия b — это значение t, отображенное в Zn.

Пример 2.25

Найти мультипликативную инверсию 11 в Z26.

Решение

Мы используем таблицу, аналогичную одной из тех, которые мы уже применяли прежде при данных r1 = 26 и r2 = 11. Нас интересует только значение t.

q

r1

r2

r

t1

t2

t

2

26

11

4

0

1

-2

2

11

4

3

1

-2

5

1

4

3

1

-2

5

-7

3

3

1

0

5

-7

26

1

0

-7

26

НОД (26, 11) = 1, что означает, что мультипликативная инверсия 11 существует. Расширенный алгоритм Евклида дает t1 = (–7).

Мультипликативная инверсия равна (–7) mod 26 = 19. Другими словами, 11 и 19 — мультипликативная инверсия в Z19. Мы можем видеть, что .

Пример 2.26

Найти мультипликативную инверсию 23 в Z100.

Решение

Мы используем таблицу, подобную той, которую применяли до этого при r1 = 100 и r2 = 23. Нас интересует только значение t.

q

r1

r2

r

t1

t2

t

4

100

23

8

0

1

-4

2

23

8

7

1

-4

19

1

8

7

1

-4

9

-13

7

7

1

0

9

-13

100

1

0

13

100

НОД (100, 23) — 1, что означает, что инверсия 23 существует. Расширенный Евклидов алгоритм дает t1 =-13. Инверсия — (–13) mod 100 = 87. Другими словами, 13 и 87 — мультипликативные инверсии в Z100. Мы можем видеть, что .

Пример 2.27

Найти инверсию 12 в Z26.

Решение

Мы используем таблицу, подобную той, которую мы применяли раньше при r1 = 26 и r2 = 12.

q

r1

r2

r

t1

t2

t

2

26

12

2

0

1

6

12

2

0

1

-2

2

0

-2

13

, что означает отсутвствие для числа 12 мультипликативной инверсии в Z26