Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

kossitsky

.pdf
Скачиваний:
87
Добавлен:
27.01.2020
Размер:
89.49 Mб
Скачать

При продолжительном раздражении блуждающего нерва прекратившиеся вначале сокращения сердца восстанавливаются, несмотря на продолжающееся раздражение. Это явление называют ускользанием сердца из-под влияния блуждающего нерва.

Влияние на сердце симпатических нервов впервые было изучено в 1867 г. братьями Ционами, а затем И. П. Павловым. Ционы описали учащение сердечной деятельности при раздражении симпатических нервов сердца (положительный хронотропный эффект); соответствующие волокна они назвали nn. accelerantes cordis (ускорители сердца). И. П. Павлов в 1887 г. обнаружил нервные волокна, усиливающие сердечные сокращения без заметного учащения ритма (положительный инотропный эффект). По мнению И. П. Павлова, эти волокна являются специально трофическими, т. е. действующими на сердце в результате стимуляции процессов обмена веществ.

При раздражении симпатических нервов ускоряется спонтанная деполяризация клеток — водителей ритма в диастолу, что ведет к учащению сердечных сокращений; увеличивается также амплитуда потенциалов действия.

Раздражение сердечных ветвей симпатического нерва улучшает проведение возбуждения в сердце (положительный дромотропный эффект) и повышает возбудимость сердца (положительный батмотропный эффект). Влияние раздражения симпатического нерва наблюдается после большого латентного периода — 10 с и более и продолжается еще долго после прекращения раздражения нерва.

Химический механизм передачи нервных импульсов в сердце. При сильном раздра-

жении периферических отрезков блуждающих нервов в их окончаниях в сердце выделяется ацетилхолин, а при раздражении симпатических нервов — норадреналин. Эти вещества являются непосредственными агентами, вызывающими торможение или усиление деятельности сердца, и потому получили название медиаторов (передатчиков) нерв-

261

ных влияний. Существование медиаторов было показано Леви в 1921 г. Он раздражал блуждающий или симпатический нерв изолированного сердца лягушки, а затем переносил жидкость из этого сердца в другое, тоже изолированное, но не подвергавшееся нервному влиянию — второе сердце давало такую же реакцию (рис. 130, 131). Следовательно, при раздражении нервов первого сердца в питающую его жидкость переходит соответствующий медиатор. На нижних кривых рис. 131 можно видеть эффекты, вызываемые перенесенной жидкостью Рингера, находившейся в сердце во время раздражения. Ацетилхолин, образующийся в окончаниях блуждающего нерва, быстро разрушается ферментом холинэстеразой, присутствующим в крови и клетках тела. Поэтому ацетилхолин оказывает только местное действие. Симпатический медиатор норадреналин разрушается значительно медленнее, чем ацетилхолин, и потому действует дольше. Этим объясняется то, что после прекращения раздражения симпатического нерва в течение некоторого времени сохраняются учащение и усиление сердечных сокращений.

Взаимодействие интракардиальных и экстракардиальных нервных регуляторных механизмов

Интрамуральные эфферентные нейроны сердца — это не только конечное звено, непосредственно передающее на структуры сердца импульсы, приходящие к сердцу по преганглионарным волокнам блуждающего нерва. Эти нейроны одновременно являются конечным звеном, через которое передаются на структуры сердца импульсы, возникающие во внутрисердечной нервной системе.

Таким образом, указанные интрамуральные эфферентные нейроны сердца представляют собой общий конечный путь для нервных влияний экстракардиального и интракардиального происхождения. Характер реакций сердца, возникающих при этом, зависит от взаимодействия импульсов экстракардиального и интракардиального происхождения.

Среди этих нейронов найдены не только холинергические, но и адренергические эфферентные нейроны. Импульсы, приходящие к сердцу по преганглионарным волокнам блуждающего нерва, как и импульсы, возникающие в рецепторах растяжения миокарда,

262

относящихся к внутрисердечной нервной системе, могут поступать как на холинергические, так и на адренергические эфферентные нейроны сердца.

Ряд данных свидетельствует о том, что адренергические эфферентные интрамуральные нейроны обладают большей возбудимостью, чем холинергические. Вследствие этого при слабой интенсивности поступающей к ним импульсации (как экстракардиального, так и интракардиального происхождения) возбуждаются внутрисердечные адренергические нейроны. Выделяемый ими норадреналин увеличивает силу и частоту сердечных сокращений, повышает возбудимость и скорость проведения возбуждения в миокарде.

При усилении поступающей импульсации происходит торможение адренергических и возбуждение холинергических эфферентных нейронов. Выделяемый ими ацетилхолин снижает частоту и силу сердечных сокращений, понижает возбудимость и скорость проведения возбуждения в миокарде.

При одной и той же силе раздражения блуждающего нерва характер его влияния на сердце может быть противоположным в зависимости от степени кровенаполнения сердца и коронарных сосудов. На фоне значительного кровенаполнения, вызывающего интенсивное возбуждение механорецепторов, раздражение преганглионарных волокон блуждающего нерва оказывает на сердце тормозящее влияние. При незначительном кровенаполнении сердца, вызывающем слабое раздражение рецепторов растяжения внутрисердечной нервной системы, возникают влияния, стимулирующие работу сердца. Этот механизм регуляций действует таким же образом, как и описанный ранее внутрисердечный механизм регуляции (посредством внутрисердечных периферических рефлексов). Вследствие этого постоянство кровенаполнения артериального русла регулируется не только рефлекторными реакциями внутрисердечной нервной системы, но и блуждающими нервами. Здесь имеет место дублирование механизмов регуляции, что очень важно для поддержания стабильности кровенаполнения артерий.

Таким образом, блуждающий нерв, взаимодействуя с внутрисердечными механизмами, может как тормозить, так и усиливать деятельность сердца, регулируя необходимый уровень кровенаполнения артериальной системы.

В условиях нормального притока крови к сердцу и нормального уровня кровенаполнения сердца и артериальной системы у человека и ряда животных преобладают тормозные влияния блуждающего нерва на сердце, доказательством чему является так называемый тонус центров блуждающего нерва.

Тонус центров, регулирующих деятельность сердца

Нервный центр, от которого идут к сердцу блуждающие нервы, как правило, находится в состоянии постоянного возбуждения — так называемого центрального тонуса. При нормальных условиях кровообращения по блуждающим нервам к сердцу постоянно поступают тормозящие влияния. Прекращение этих влияний после перерезки обоих блуждающих нервов у собаки вызывает учащение сокращений сердца.

У человека временного выключения влияния блуждающих нервов можно добиться введением алкалоида атропина. В таких случаях сокращения сердца резко учащаются.

Удаление обоих звездчатых узлов, от которых отходят к сердцу симпатические нервы, не влечет за собой стойкого урежения сердечных сокращений, так как тонус нервных центров, от которых к сердцу идут симпатические нервы, или отсутствует, или выражен слабо. Поддержание центрального тонуса блуждающих нервов обусловлено рефлекторными влияниями, т. е. возбуждением ядра блуждающих нервов импульсами, идущими к нему по центростремительным нервам от различных рецепторов. В поддержании тонуса ядер блуждающих нервов особенно велика роль тех импульсов, которые поступают к ним по центростремительным нервам от рецепторов дуги аорты и каротидного синуса. Перерезка этих нервов вызывает падение тонуса центров блуждающих нервов и вследствие этого отмечается такое же учащение сердечных сокращений, как после перерезки самих блуждающих нервов.

263

На тонус ядер блуждающих нервов влияют также некоторые химические факторы. Тонус повышается при увеличении содержания в крови адреналина, выделяемого в кровь мозговым веществом надпочечников, а также ионов Са2+.

Тонус ядер блуждающих нервов изменяется в зависимости от фазы дыхания. В конце выдоха он повышается и сердечная деятельность поэтому замедляется. В результате наблюдается дыхательная аритмия. Она исчезает после перерезки блуждающих нервов или введения атропина.

У новорожденного тонус ядер блуждающих нервов отсутствует. Это видно из того, что перерезка сердечных нервов у новорожденных животных, а также введение детям атропина, выключающего передачу на сердце влияний блуждающего нерва, не отражается на частоте сердечных сокращений.

В отличие от блуждающих нервов волокна симпатических нервов не вступают во взаимодействие с регуляторными процессами, осуществляемыми внутрисердечной нервной системой. Они оказывают на сердце лишь стимулирующие влияния, т. е. положительные ино-, хроно-, батмо- и дромотропный эффекты.

Центры блуждающих и симпатических нервов являются второй ступенью иерархии нервных центров, регулирующих работу .сердца. Более высокая ступень этой иерархии — центры гипоталамической области. При искусственном электрическом раздражении различных зон гипоталамуса наблюдаются резкие реакции сердечно-сосудистой системы, по силе и выраженности намного превосходящие реакции, возникающие в естественных условиях. При локальном точечном раздражении некоторых пунктов гипоталамуса удавалось наблюдать изолированные реакции: изменение только ритма сердца, или только силы сокращений левого желудочка, или только степени расслабления левого желудочка и т. д. Таким образом удалось выявить, что в гипоталамусе имеются структуры, способные регулировать отдельные функции сердца. В естественных условиях эти структуры не работают изолированно. Гипоталамус представляет собой интегративный центр, который может изменять любые параметры сердечной деятельности и состояние любых отделов сердечно-сосудистой системы с тем, чтобы обеспечить потребности организма при поведенческих реакциях, возникающих в ответ на изменение условий окружающей (и внутренней) среды.

Однако гипоталамус также является лишь одним из уровней иерархии центров, регулирующих деятельность сердца. Он — исполнительный механизм, обеспечивающий интегративную перестройку функций сердечно-сосудистой системы (и других систем) организма по сигналам, поступающим из расположенных выше отделов мозга -- лимбической системы и новой коры. Раздражение определенных структур лимбической системы, или новой коры, наряду с двигательными реакциями изменяет функции сердечнососудистой системы: артериальное давление, частоту сердечных сокращений и т. д.

Анатомическая близость в коре центров, ответственных за возникновение двигательных и сердечно-сосудистых реакций, способствует оптимальному вегетативному обеспечению поведенческих реакций организма.

Рефлекторная регуляция сердечной деятельности осуществляется при участии всех перечисленных отделов центральной нервной системы. Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения.

Рефлекторные изменения работы сердца возникают при раздражении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Они возбуждаются при изменении давления крови в сосудах или гуморальными (химическими) раздражителями. Участки, где сосредоточены такие рецепторы, получили название сосудистых рефлексогенных зон. Особенно значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает замедление сердечных сокращений. Эти нервные окончания представляют собой прессорецепторы. Естественным их раздражителем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где

264

они расположены. Поток афферентных нервных импульсов от прессорецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще поток афферентных импульсов от прессорецепторов (рис. 132).

Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздражения рецепторов сосудов многих внутренних органов.

Обнаружены также рецепторы в самом сердце: эндокарде, миокарде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.

В правом предсердии и у устья полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в полости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов и вызывают рефлекторное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов. Так, при увеличенном наполнении левого предсердия кровью в 2—5 раз возрастает выделение мочи почками, что вызывает уменьшение объема крови и нормализацию наполнения предсердий.

Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишечнику лягушки вызывает остановку сердца или замедление его сокращений (рис. 133). Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолговатом мозге. Отсюда начинаются центробежные пути, образованные ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10—20 в минуту при надавливании на глазные яблоки).

Рефлекторное учащение и усиление сердечной деятельности наблюдается при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при

265

мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, поступающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.

Условнорефлекторная регуляция сердечной деятельности

Тот факт, что различные эмоции вызывают изменение сердечной деятельности, указывает на значение коры полушарий большого мозга в регуляции деятельности сердца. Доказательством этого является то, что изменения ритма и силы сердечных сокращений можно наблюдать у человека при одном упоминании или воспоминании о факторах, вызывающих у него определенные эмоции.

Наиболее убедительные данные о наличии корковой регуляции деятельности сердца получены методом условного рефлекса. Если какой-нибудь, например звуковой, раздражитель сочетать многократно с надавливанием на глазное яблоко, вызывающим уменьшение частоты сердечных сокращений, то затем один этот раздражитель вызывает урежение сердечной деятельности — условный глазосердечный рефлекс.

Условнорефлекторные реакции лежат в основе тех явлений, которые характеризуют так называемое предстартовое состояние спортсменов. Перед соревнованием у них наблюдаются изменения дыхания, обмена веществ, сердечной деятельности такого же характера, как и во время самого соревнования. (У конькобежцев на старте сердечная деятельность учащается на 22—35 сокращений в минуту).

Кора мозга обеспечивает приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, предвещающие наступление этих событий или значительную вероятность их возникновения, могут вызвать перестройку функций сердца и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

При чрезвычайно сложных ситуациях (действие «чрезвычайных раздражителей», по И. П. Павлову) возможны нарушения и срывы этих корковых высших регуляторных механизмов (неврозы по И. П. Павлову). При этом наряду с расстройствами поведенческих реакций (и невротическими изменениями психологического статуса человека) могут появиться и значительные нарушения деятельности сердца и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов. При этом нарушения сердечной деятельности могут возникнуть при действии одних лишь условных сигналов.

Гуморальная регуляция сердечной деятельности

Изменения деятельности сердца наблюдаются и при действии на него ряда биологически активных веществ, циркулирующих в крови.

Катехоламины (адреналин, норадреналин) резко увеличивают силу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При резких физических нагрузках или состоянии эмоционального напряжения мозговой слой надпочечников выбрасывает в кровь большие количества адреналина. Это приводит к резкому усилению сердечной деятельности, крайне необходимому в данных условиях.

Указанный эффект возникает в результате стимуляции катехоламинами р-рецепто- ров миокарда, вызывающей активацию внутриклеточного фермента аденилатциклазы, которая ускоряет реакцию образования 3,5-циклического аденозинмонофосфата (цАМФ). цАМФ активирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокращающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са2+ — агента, реализующего сопряжение возбуждения и сокращения в миокарде (это также усиливает положительное инотропное действие катехоламинов). Помимо этого, катехоламины повышают проницаемость клеточных мембран для ионов Са2+,. способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Са2+ из внутриклеточных депо.

266

Активация аденилатииклазы отмечается в миокарде и при действии глюкагона — гормона, выделяемого α-клетками островков поджелудочной железы, что также вызывает

положительный инотропный эффект. Гормоны коры надпочечников, ангиотензнн и серо-

тонин также увеличивают силу сокращений миокарда, а тироксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.

КРОВЕНОСНЫЕ СОСУДЫ ОСНОВНЫЕ

ПРИНЦИПЫ ГЕМОДИНАМИКИ

Наука, изучающая движение крови в сосудистой системе, получила название гемодинамики. Она является частью гидродинамики — раздела физики, изучающего движение жидкостей.

Согласно законам гидродинамики, количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р1) и в конце (P2) трубы и обратно пропорционально сопротивлению (R) току жидкости:

Если применить это уравнение к сосудистой системе человека, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:

где: Q — количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте; R — величина сосудистого сопротивления.

Из этого уравнения следует, что P=Q-R, т.е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического сопротивления (R). Давление в аорте (Р) и минутный объем сердца (Q) можно измерить непосредственно. Зная эти две величины, вычисляют периферическое сопротивление — важнейший показатель состояния сосудистой системы.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:

где / — длина трубки; v — вязкость протекающей в ней жидкости; я — отношение окружности к диаметру; r — радиус трубки.

Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме сопротивлений каждой трубки:

При параллельном соединении трубок их суммарное сопротивление вычисляют по формуле:

267

Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие сокращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы (эритроциты и др.), которые располагаются в центре потока. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозможен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.

Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5—7 мкм. Однако огромное количество капилляров включено в ток крови параллельно. Поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.

Артериолы представляют собой тонкие сосуды (диаметром от 15 до 70 мкм). Стенка этих сосудов содержит толстый слой кольцевой гладкой мускулатуры, при сокращении которой просвет сосуда может значительно уменьшаться, что резко повышает сопротивление артериол. Изменение сопротивления артериол меняет уровень давления крови в артериях. При увеличении сопротивления артериол отток крови из артерий уменьшается, кровь задерживается в артериях и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы. Поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны сердечно-сосудистой системы» (И. М. Сеченов). Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.

Итак, артериолы играют двоякую роль: участвуют в поддержании необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.

В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается. Суммарная величина общего периферического сопротивления (и общий уровень артериального давления) остаются примерно постоянными несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного-сосуда. Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10 %, а в артериолах и капиллярах — на 85 %. Это означает, что 10 % энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85 % — на продвижение крови в артериолах и капиллярах. Распределение давления в разных отделах сосудистого русла показано на рис. 134.

Зная объемную скорость кровотока, измеряемую в миллилитрах в секунду, можно рассчитать линейную скорость кровотока, которая выражается в сантиметрах в секунду.

268

Линейная скорость (V) отражает скорость про

движения

частиц крови вдоль сосуда и равна

объемной

(Q), деленной на площадь сечения

кровеносного сосуда:

:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальная, а около стенки сосуда она минимальная в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Объем крови, протекающей в 1 мин через аорту или полые вены и через легочную артерию илилегочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекший в 1 мин через всю артериальую систему или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это и следует из уравнения, выражающего соотношение линейной и объемной скорости: чем больше общая площадь сечения сосудов, тем меньше линейная скорость кровотока. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то что каждая ветвь сосуда уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: сумма просветов всех капилляров примерно в 500—600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500—600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте. Распределение скорости кровотока в кровеносной системе показано на рис. 135.

В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер. Поэтому понятно, что линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки.

69

Обусловливают непрерывный ток крови по всей сосудистой системе резко выраженные упругие свойства аорты и крупных артерий.

В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ

Артериальное давление крови

Измерение давления в артериях у животного, а иногда и у человека производят путем введения в артерию стеклянной канюли или иглы, соединенной с манометром трубкой с жесткими стенками. Чтобы кровь в канюле и соединительной трубке не свертывалась, их заполняют раствором противосвертывающего вещества.

Кроме этого прямого (кровавого) способа, применяюткосвенные, или бескровные. Они основываются на измерении давления, которому нужно подвергнуть стенку данного сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи. Обследуемому накладывают на плечо полую резиновую манжетку, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с манометром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, выслушивают сосудистые тоны, возникающие в артерии

кпериферии от наложенной на плечо манжеты.

Внесдавленной артерии звуки при движении крови обычно отсутствуют. Если поднять давление в манжете выше уровня систолического артериального давления, то манжета полностью перекрывает просвет артерии и кровоток в ней прекращается. Звуки при этом отсутствуют. Если теперь постепенно выпускать воздух из манжеты (т. е. создавать декомпрессию), то в момент, когда давление в ней станет чуть ниже уровня систолического артериального, кровь при систоле преодолевает сдавленный участок и про-

рывается за манжету. Удар о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией через сдавленный участок, порождает звук, слышимый ниже манжеты. То давление в манжете, при котором появляются первые звуки в ар-

терии, соответствует максимальному, т. е. систолическому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже, диастолического, кровь начинает проходить по артерии как во время систолы, так и во время диастолы. В этот момент звуки в артерии ниже манжеты исчезают. По величине давления в манжете в момент исчезновения звуков в артерии судят о величине минимального, т. е. диастолического, давления. При сопоставлении величины давления в артерии, определенные по способу Короткова и зарегистрированные у этого же человека путем введения в артерию иглы, соединенной с электроманометром, совпадают.

Давление крови в артериях не является постоянным: оно непрерывно колеблется от некоторого среднего уровня. На кривой артериального давления эти колебания имеют различный вид.

Волны первого порядка (пульсовые) самые частые, зависят от силы и частоты сокращений сердца. Во время каждой систолы некоторое количество крови поступает в артерии и увеличивает их эластическое растяжение, давление в них повышается. Во время диастолы поступление крови из желудочков в артериальную систему прекращается и происходит только отток крови из крупных артерий; растяжение их стенок уменьшается и давление снижается. Колебания давления распространяются от аорты и легочной артерии на все их, разветвления, постепенно затухая. Наибольшая величина давления в артериях,

270

Соседние файлы в предмете Нормальная физиология