Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Virusologia_shporki.doc
Скачиваний:
72
Добавлен:
11.02.2015
Размер:
369.15 Кб
Скачать

Микробиологическая диагностика.

Вирусологические и серологические ис­следования включают методы определения антигенов и антител ВИЧ. Для этого исполь­зуют ИФА, ИБ и ПЦР. Сыворотки больных ВИЧ-1 и ВИЧ-2 содержат антитела ко всем вирусным белкам. Однако для подтвержде­ния диагноза определяют антитела к белкам gp41, gpl20, gpl60, p24 у ВИЧ-1 и антитела к белкам gp36, gpl05, gpl40 у ВИЧ-2. ВИЧ-антитела появляются через 2—4 недели пос­ле инфицирования и определяются на всех стадиях ВИЧ.

Метод выявления вируса в крови, лим­фоцитах. Однако при любой положительной пробе для подтверждения результатов ставится ре­акция ИБ. Применяют также ПЦР, способ­ную выявлять ВИЧ-инфекцию в инкуба­ционном и раннем клиническом периоде, однако ее чувствительность несколько ниже, чем у ИФА.

Клинический и серологический диагнозы подтверждаются иммунологическими иссле­дованиями, если они указывают на наличие иммунодефицита у обследуемого пациента.

Диагностическая иммуноферментная тест-система для определения антител к ВИЧ – включает вирусный АГ, адсорбированный на носителе, АТ против Ig человека. Используется для серодиагностики СПИДа.

Лечение: применение ингибиторов обратной транскриптазы, действующих в активирован­ных клетках. Препараты являются производные тимидина — азидотимидин и фосфазид.

Профилактика. Специфическая - нет.

Классификация и характеристика онкогенных вирусы

РНК-содержащие: семейство Retroviridae.

ДНК-содержащие: семейства Papillomaviridae, Polyomaviridae, Adenoviridae 12, 18, 31, Hepadnaviridae, Herpesviridae, Poxviridae

Семейство Retroviridae включает 7 родов.

Онковирусы являются сложноорганизованными вирусами. Вирионы построены из сердцевины, окружен­ной липопротеиновой оболочкой с шипами. Размеры и формы шипов, а также локализа­ция сердцевины служат основой для подраз­деления вирусов на 4 морфологических типа (А, В, С, D), а также вирус бычьего лейкоза.

Капсид онковирусов построен по кубичес­кому типу симметрии. В него заключены нуклеопротеин и фермент ревертаза. Ревертаза обладает способностью транскрибировать ДНК. Геном – 2 идентичные цепи РНК.

Культивирование вирусов: не культивируются на куриных эмбрионах, культивируются в организме чувствительных животных, в культурах клеток.

Репродукция вирусов: проникают в клетку путем эндоцитоза. 3 этапа: синтез ДНК, на матрице РНК; ферментативное расщепление матричной РНК; синтез комплементарной нити ДНК на матрице первой нити ДНК.

К семейству Retroviridae относится пример­но 150 видов вирусов, вызывающих развитие опухолей у животных, и только 4 вида вызы­вают опухоли у человека: HTLV-1, HTLV-2, ВИЧ-1,ВИЧ-2.

Вирусы Т-клеточного лейкоза человека

К семейству Retroviridae роду Deltaretrovirus относятся вирусы, поражающие CD4 Т-лимфоциты, для которых доказана этиологичес­кая роль в развитии опухолевого процесса у людей: HTLV-1 и HTLV-2

Вирус HTLV-1 является возбудителем Т-клеточного лимфолейкоза взрослых. Он является экзогенным онковирусом, который, в отли­чие от других онковирусов, имеет два допол­нительных структурных гена: tax и rех.

Продукт tax-гена действует на терминаль­ные повторы LTR, стимулируя синтез вирус­ной иРНК, а также образование ИЛ-2 рецеп­торов на поверхности зараженной клетки. Продукт rex-гена определяет очередность трансляции вирусных иРНК.

HTLV-2 был изолирован от больного во­лосисто-клеточным лейкозом.

Оба вируса передаются половым, трансфузионным и трансплацентарным путями.

Семейство Papillomaviridae – вирус папилломы человека, собак. Вызывают инфекцию в клетках плоского эпителия. Доброкачественные папилломы в области половых органов, на коже, на слизистых дыхательных путей.

Семейство Polyomaviridaeвакуолизирующий вирус обезьян SV-40.Вирус полиомы человека.

Семейство Adenoviridaeаденовирусы, особенно серотипы 12,18,31 – индуцируют саркомы и трансформируют культуры клеток.

Семейство Poxviridaeвирусы фибромы-миксомы кролика, вирус Ябы, вызывающий развитие опухолей, вирус контагиозного моллюска.

Семейство Herpesviridaeлимфомы, карциномы. Онкогенез у человека связан с вирусом простого герпеса 2 типа (ВПГ-2) и вирусом Эпштейна-Барр (ВЭБ).

Медленные вирусные инфекции и прионные болезни.

Медленные вирусные инфекции характери­зуются следующими признаками:

1) необычно длительным инкубационным периодом (месяцы, годы); 2) своеобразным поражением органов и тканей, преимущественно ЦНС; 3) медленным неуклонным прогрессированием заболевания; 4) неизбежным летальным исходом.

Медленные вирусные инфекции могут вы­зывать вирусы, известные как возбудители острых вирусных инфекций. Например, ви­рус кори иногда вызывает ПСПЭ(подострый склерозирующий панэнцефалит), вирус краснухи — прогрессирую­щую врожденную краснуху и краснушный панэнцефалит.

Типичную медленную вирусную инфекцию животных вызывает вирус Мэди/Висна от­носящийся к ретровирусам. Он является воз­будителем медленной вирусной инфекции и прогрессирующей пневмонии овец.

Прионы — возбудители конформационных болезней, вызывающих диспротеиноз.

Патогенез и клиника. Прионные инфекции характеризуются губкообразными измене­ниями мозга (трансмиссивные губкообразные энцефалопатии). При этом развивают­ся церебральный амилоидоз (внеклеточный диспротеиноз, характеризующийся отло­жением амилоида с развитием атрофии и склероза ткани) и астроцитоз (разрастание астроцитарной нейроглии, гиперпродукция глиальных волокон). Образуются фибриллы, агрегаты белка или амилоида. Иммунитета к прионам не существует.

Куру прионная болезнь, в результате ритуального канни­бализма — поедания недостаточно терми­чески обработанного инфицированного прионами мозга погибших сородичей. В результате поражения ЦНС нарушаются координация движений, походка, появля­ются озноб, эйфория.

Болезнь Крейтцфельдта—Якоба прион­ная болезнь (инкубационный период — до 20 лет), протекающая в виде деменции, зри­тельных и мозжечковых нарушений и дви­гательных расстройств со смертельным ис­ходом через 9 месяцев от начала болезни. Возможны различные пути инфицирования и причины развития болезни: 1) при упот­реблении недостаточно термически обрабо­танных продуктов животного происхожде­ния, например мяса, мозга коров, больных губкообразной энцефалопатией крупного рогатого скота; 2) при транспланта­ции тканей, например роговицы глаза, при применении гормонов и других БАВ животного происхож­дения, при использовании контаминированных или недостаточно простерилизованных хирургических инструментов.

Синдром Герстманна—Штреусслера— Шейнкера прионная болезнь с наследс­твенной патологией, протекающая с деменцией, гипотонией, на­рушением глотания, дизартрией. Инкубационный период — от 5 до 30 лет.

Фатальная семейная бессонница — аутосомно-доминантное заболевание с прогрес­сирующей бессонницей, симпатической ги­перреактивностью

Скрепи - прионная болезнь овец и коз, характери­зующаяся сильным кожным зудом, пораже­нием ЦНС, прогрессирующим нарушением координации движений и неизбежной гибе­лью животного.

Губкообразная энцефалопатия крупного рога­того скота прионная болезнь крупного ро­гатого скота, характеризующаяся поражением ЦНС, нарушением координации движений и

неизбежной гибелью животного.

Микробиологическая диагностика. При прионной патологии характерны губкообразные изменения мозга, астроцитоз (глиоз), отсутс­твие инфильтратов воспаления; окраска. Мозг окрашивают на амилоид. В цереброспиналь­ной жидкости выявляют белковые маркеры прионных мозговых нарушений (с помощью ИФА, ИБ с моноклональными антителами). Проводят генетический анализ прионного ге­на; ПЦР для выявления РгР.

Профилактика. Введение ограничений на использование лекарственных препаратов жи­вотного происхождения. Ограничение трансплантации твердой мозговой оболочки. Использование резиновых перчаток при работе с биологичес­кими жидкостями больных.

Роль воздушной среды в распространении вирусных забо­леваний, методы отбора воздуха и индикации вирусов.

Санитарно – микробиологические показатели воздуха определяют седиментационным или аспирационным методами.

Аспирационный метод отбора проб — при­нудительное осаждение микробных частиц из воздуха. Для этого используют пробоотборник аэрозоля бактериологи­ческого. Принцип его действия основан на электризации частиц исследуемого воздуха и последующем их осаждении на электроде противоположного знака, роль которого играет метал­лический поддон с питательной средой. После инкубирования питательной среды подсчитывают количество вы­росших колоний и выражают обсемененность воздуха на определенный объем исследован­ного воздуха.

Седиментационный метод — осаждение микробов на поверх­ность плотной питательной среды под действием силы тяжести (гравитации). Открытую чашку Петри с питательной средой ста­вят на горизонтальную поверхность и оставляют на определенное время. Затем чашку закрывают и ин­кубируют в термостате. С помощью этого метода можно ориенти­ровочно определить микробную обсемененность воздуха.

1. Общее количество микроорганизмов в 1 м воздуха (обсемененность воздуха) — коли­чество колоний микроорганизмов, выросших при посеве воздуха на питательном агаре в чашке Петри в течение 24 ч при 37С.

2. Индекс санитарно-показательных микро­бовколичество золотистого стафилококка и гемолитических стрептококков в 1 м3 воздуха. Эти бактерии являются представителями мик­рофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроор­ганизмами, передающимися воздушно-капель­ным путем. Появление в воздухе спорообразующих бактерий — показатель загрязненности воздуха микроорганизмами почвы, а появление грамотрицательных бактерий — показатель воз­можного антисанитарного состояния.

Бактериофаги

Бактериофаги (фаги) – это вирусы, поражающие клетки бактерий. Они не имеют клеточной структуры, неспособны сами синтезировать нуклеиновые кислоты и белки, поэтому являются облигатными внутриклеточными паразитами.

Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и отростка.

Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток – спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии.

Фаги могут существовать в двух формах:

1) внутриклеточной (это профаг, чистая ДНК);

2) внеклеточной (это вирион).

Различают два типа взаимодействия фага с клеткой.

1. Литический (продуктивная вирусная инфекция). Это тип взаимодействия, при котором происходит репродукция вируса в бактериальной клетке. Она при этом погибает. Вначале происходит адсорбция фагов на клеточной стенке. Затем следует фаза проникновения. В месте адсорбции фага действует лизоцим, и за счет сократительных белков хвостовой части в клетку впрыскивается нуклеиновая кислота фага. Далее следует средний период, в течение которого подавляется синтез клеточных компонентов и осуществляется дисконъюнктивный способ репродукции фага. При этом в области нуклеоида синтезируется нуклеиновая кислота фага, а затем на рибосомах осуществляется синтез белка. Фаги, обладающие литическим типом взаимодействия, называют вирулентными.

В заключительный период в результате самосборки белки укладываются вокруг нуклеиновой кислоты и образуются новые частицы фагов. Они выходят из клетки, разрывая ее клеточную стенку, т. е. происходит лизис бактерии.

2. Лизогенный. Это умеренные фаги. При проникновении нуклеиновой кислоты в клетку идет интеграция ее в геном клетки, наблюдается длительное сожительство фага с клеткой без ее гибели. При изменении внешних условий могут происходить выход фага из интегрированной формы и развитие продуктивной вирусной инфекции.

По признаку специфичности выделяют:

1) поливалентные фаги (лизируют культуры одного семейства или рода бактерий);

2) моновалентные (лизируют культуры только одного вида бактерий);

3) типовые (способны вызывать лизис только определенных типов (вариантов) бактериальной культуры внутри вида бактерий).

Фаги могут применяться в качестве диагностических препаратов для установления рода и вида бактерий, выделенных в ходе бактериологического исследования. Однако чаще их применяют для лечения и профилактики некоторых инфекционных заболеваний.

Морфология вирусов, типы взаимодействия вируса с клеткой

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть: округлыми, палочковидными, в виде правильных многоугольников, нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров.

Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

5) содержащей две одинаковые однонитевые РНК.

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрические структуры, в которых различают несколько типов симметрии: спиральный, кубический или смешанный;

3) белки суперкапсидной оболочки – это сложные белки. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Взаимодействие вирусов с клеткой хозяина. Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (клетка, инфицированная вирусом, приобретает новые, свойства).

Культивирование вирусов. Противовирусный иммунитет

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития;

3) накопление вирусов в аллантоисной жидкости;

4) размножение в культуре ткани.

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обрабоке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки.

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но не делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами;

2) иммунный лизис инфицированных вирусом клеток с участием антител.

Морфология и химический состав вирусов. Отличие вирусов от других организмов. Методы культивирования вирусов. Культуры клеток и их характеристика.



Первооткрывателем вирусов, основоположником вирусологии является русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)

Вирусы настолько отличаются от микроорганизмов, что выделены в особое царство - царство Vira.

Особенности вирусов, отличающие их от всех других живых существ:

наличие только одного типа нуклеиновой кислоты - ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза белков;

отсутствие собственных белоксинтезирующих систем и клеточного строения;

внутриклеточный паразитизм на молекулярном (генетическом) уровне;

убиквитарность (распространенны повсеместно);

имеют микроскопические размеры.

Внеклеточная форма вируса - вирион и вирус, находящийся внутри клетки хозяина - это две разные формы вируса.

Вирионы разных вирусов имеют размеры от 15 до 400 нанометров. Нанометр - это 10-9 метра (рис. 6). Наиболее мелкие вирусы - вирусы полиомиелита - имеют вирион размером 17-25 им, средние - вирус гриппа - 80-120 нм, крупные - вирус оспы - 300-400 им.

В центре вириона располагается его геном. Это нуклеиновая кислота - ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, например у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.

Вокруг нуклеиновой кислоты симметрично располагаются белковые молекулы - капсомеры, составляющие капсид (лат. capsa - коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда кап­сомеры располагаются в виде двадцатигранника (икосаэдра).

Вирионы, содержащие только нуклеиновую кислоту и белок, составляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.

У вирионов сложноорганизованных вирусов имеется еще поверхностная оболочка - суперкапсид, содержащий, кроме белков, также углеводы, липиды, компоненты клетки хозяина. Строение вирио­на лежит в основе классификации вирусов. По типу нуклеиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структуре вирионов, по месту размножения и по другим признакам проводится деление на семейства и роды.

Вследствие малых размеров вирусы не видны в световом микроскопе. Только наиболее крупный из них - вирус оспы - можно наблюдать в виде мелких точечных образований - элементарных телец Пашена.

Размножаясь в чувствительных клетках организма, вирусы оспы, бешенства, гриппа образуют в них внутриклеточные включения. Их можно обнаружить в световом или в люминесцентном микроскопе. Обнаружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках обнаруживаются при бешенстве.

Морфологию вирионов изучают в электронном микроскопе. Вирусы имеют разные формы: сферическую, нитевидную, палочковидную.

Методы культивирования вирусов:

Заражение животных (в\брюшинно, в\в, в\м, интраназально, заражение в мозг и другие)

На куриных эмбрионах после заражения их на хорион – аллантоисную оболочку, в аллантоисную полость, в амниотическую полость, в желточный мешок.

На культуре клеток различных тканей.

Культура ткани – это клетки ткани, выращенные вне организма на специальной питательной среде. Клетки ткани в искусственных условиях сохраняют присущий им обмен веществ и восприимчивость к определенным вирусам. Наиболее пригодными для культивирования вирусов являются клетки с быстрым росток и высоким обменом веществ. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбрионов, клетки амниона человека и др.), а также культуры тканей опухолей. Выращивание клеток культур тканей производят в специальных флаконах (колбы – матрицы, флаконы Карреля и др.) и в пробирках. Культура клеток для роста должна иметь какую – либо опору, например, пластинки стекла, стенку пробирки. В выросшую культуру ткани, которая покрывает стенку сосуда или пластинку стекла в виде однослойного клеточного пласта, засевают материал, содержащий вирус. Работу производят в стерильных условиях. Для подавления роста другой микрофлоры (кроме вирусов) вируссодержащий материал предварительно обрабатывают антибиотиками, чаще пенициллином и стрептомицином. Размножение вируса в клетках определяют по цитопатическому действию (ЦПД): в результате размножения вируса в клетках при микроскопии обнаруживаются включения, дегенеративные изменения и в конечном итоге клетки гибнут. Так как рост клеток прекращается, ph среды мало изменяется по сравнению с контролем (клетки без вируса). В связи с этим не изменяется и цвет среды. Питательной средой для культуры тканей могут быть различные растворы, состав которых приближается к составу жидкостей организма (синтетическая среда 199, солевой раствор Хенкса с сывороткой, гидролизат лактальбумина с сывороткой и другие). В настоящее время в вирусологической практике чаще всего применят свежие культуры клеток (первичные или первично – трипсинизированные) и перевиваемые культуры (линии) клеток.

Первично – трипсинизированные культуры клеток готовят из органов взрослых животных (чаще из почек обезьян и других животных) и эмбрионов человека, куриных фиброфластов путем трипсинизации кусочков тканей с последующим культивированием в питательной среде. С этой целью кусочки тканей измельчают ножницами (или другим способом), а затем промывают буферным раствором Хенкса для удаления крови и обрабатывают 0,25 – 0,3 % раствором трипсина. Трипсин разрушает межклеточные мостики и освобождает клетки. С помощью камеры Горяева подсчитывают количество клеток, разводят до концентрации 400 тыс. клеток в 1 мл. Полученную взвесь клеток разливают в пробирки, плотно закрывают стерильными резиновыми пробками и помещают в термостат при 37°С в почти горизонтальном положении (под углом 50°) в специальных штативах. Через 3-4 дня на стенке пробирки образуется сплошной слой размножившихся клеток. Пробирки с хорошим ростом ткани отбирают для заражения вирусом.

Перевиваемые культуры клеток (растущие) - это стабильные линии клеток, пассируемые вне организма в течение многих лет. Их получают из злокачественных опухолей и из нормальных (эмбриональных) тканей человека и животных. К ним относятся: 1) линия Hela – клетки карциномы шейки матки человека; 2)линия Hep – 2 – клетки злокачественной опухоли гортани человека; 3) линия Детройт – 6 – клетки, выделенные из костного мозга человека, больного раком легких; 4) линии А – 0 и А – 1 – клетки амниона человека; 5) линия СОЦ – клетки сердца обезьяны циномольгус и другие.

Полуперевиваемые или диплоидные культуры клеток – это клетки тканей человека, сохраняющие в процессе пассажей – диплоидный набор хромосом. Диплоидные клетки человека не подвергаются злокачественному перерождению и этим выгодно отличаются от опухолевых.

Методы культивирования вирусов

Вирусы - строгие внутриклеточные паразиты, поэтому их можно выращивать только в живых клетках. Для культивирования вирусов используют лабораторных животных, развивающиеся куриные эмбрионы и культуры клеток.

Лабораторные животные: белые мыши (для вирусов гриппа, Коксаки), кролики (вирус бешенства). Индикацию, то есть обнаружение вируса, проводят на основании развития типичных признаков заболевания и изменений органов животного.

Куриные эмбрионы 5-19-дневной инкубации пригодны для культивирования большинства вирусов: Преимущества метода: стерильность и отсутствие скрытых вирусных инфекций, возможность получения вирусов в больших количествах, простота техники работы. В зависимости от цели и от вида вируса материал вносят на хорион-аллантоисную оболочку, в аллантоисную полость, желточный мешок, амниотическую полость. Индикацию вирусов проводят по характеру колоний вируса на хорион-аллантоисной оболочке. В аллантоисной жидкости вирусы обнаруживают по реакции гемагглютинации. Эта реакция основана на способности вируса гриппа и некоторых других вирусов агглютинировать (склеивать) куриные эритроциты.

Культура клеток - это клетки из органа животного или человека, которые живут и размножаются вне организма в питательном растворе (в среде 199 или в среде Хенкса). Культивирование в культуре клеток - один из наиболее распространенных методов в вирусологии. Чаще всего применяются однослойные культуры клеток, прикрепленные к стенкам пробирок или плоских флаконов. Различают несколько типов культур.

первично-трипсинизированные, которые получают, обрабатывая трипсином исходную ткань, например, почки обезьян, или эмбриональную ткань человека. Культура клеток используется однократно.

перевиваемые культуры клеток способны размножаться при многократных посевах на свежие питательные среды. Они могут поддерживаться в лаборатории путем постоянных пересевов в течение десятков лет. Во многих лабораториях применяются перевиваемые культуры, полученные из раковой ткани человека: HeLa, ИЕр-2 и др.

полуперевиваемые культуры клеток - это, например, диплоидные клетки из фибробластов человеческого эмбриона, способные размножаться в течение 40-50 пассажей (пересевов), сохраняя исходный диплоидный набор хромосом.

Обнаружение вирусов в культуре клеток. Вирусы в культуре клеток обнаруживаются по цитопатическому действию (ЦПД), которое вызывают многие вирусы, например, вирус полиомиелита. ЦПД проявляется в дегенерации и разрушении клеток, или в формировании мно­гоядерных клеток.

ЦПД можно обнаружить по цветной пробе. Для этого используют клетки, помещенные в питательную среду с индикатором, например, метиловым красным. При размножении незараженных клеток образуются кислые продукты метаболизма, и индикатор меняет цвет на желтый. Если клетки заражены вирусом, происходит нарушение нормального метаболизма клеток, и цвет среды не меняется.

Репродукцию вируса в клетке можно обнаружить и по образованию внутриклеточных включений.

Для подсчета количества вирионов используют метод бляшек. Клеточный монослой, покрытый тонким слоем агара, в плоском флаконе, заражают вирусом и по количеству бляшек или "стерильных пятен" подсчитывают количество вирионов. Считается, что одна бляшка образуется при размножении одного вириона.

Репродукцию вируса в клетке можно обнаружить также по реакции гемадсорбции. Это вариант реакции гемагглютинации. Эритроциты, внесенные в культуру клеток, адсорбируются на поверхности клеток, зараженных вирусом. Реакцию применяют, например, для обнаружения вируса гриппа.

Фаги (вирусы микробов): морфология и ультраструктура. Фазы взаимодействия вирулентного и умеренного фагов с бактериальной клеткой. Определение активности (титра) бактериальной клетки. Профаг. Фаготипирование микроорганизмов, значение. Практическое использование

Явление бактериофагии открыл и изучил французский микробиолог д'Эррель. В 1917 г. он наблюдал лизис культуры бактерий дизентерии после внесения в нее фильтрата испражнений больного, выздоравливающего от дизентерии. При многократных пассажах, то есть переносе из одной культуры в другую, фильтраты сохраняли свою лизирующую активность и даже усиливали ее. Ученый сделал из этого правильный вывод о том, что лизирующий агент - живой и при пассажах размножается в бактериях. Д'Эррель назвал этот агент бактериофагом (лат. phagos -пожирающий), а само явление лизиса - бактериофагией.

Позже было подтверждено, что бактериофаг - живой. Это вирус бактерий, он размножается в бактериях, вызывая их лизис. Добавление бактериофага в культуру бактерий на жидкой питательной среде вызывает просветление среды. На плотных питательных средах при посеве смеси бактерий и бактериофага на фоне сплошного роста бактерий появляются стерильные пятна или негативные колонии фагов.

Бактериофаги специфичны, то есть лизируют определенные виды бактерий. Отсюда их названия: дизентерийный бактериофаг, стафилококковый бактериофаг. Обнаружены фаги не только бактерий, но и актиномицетов.

В практической медицине бактериофаги нашли применение как лечебные и профилактические средства,

Важное значение имеет то, что на примере бактериофагии были открыты и изучены многие проблемы общей вирусологиии и молекулярной генетики.

Структура бактериофагов

Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встречаются и лучше изучены бактериофаги, имеющие форму сперматозоида или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спирально скрученная пить ДНК, покрытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окруженный сократительным чехлом. Базальная пластинка и нити осуществляют процесс адсорбции бактериофага на бактериальной клетке. Существуют бактериофаги, имеющие другое строение: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

Взаимодействие бактериофага с бактериальной клеткой

Как все вирусы, бактериофаги не размножаются на питательных средах. Их размножение происходит только в чувствительных к ним бактериальных клетках, в процессе взаимодействия, в котором наблюдаются те же фазы, что при взаимодействии других вирусов с клеткой.

Адсорбция бактериофага. Как все вирусы, фаги неподвижны, и столкновение с бактерией происходит случайно, затем адсорбция становится прочной, если у клетки имеются на поверхности фагоспецифические рецепторы. Фаги, имеющие сократительный чехол, адсорбируются с помощью хвостового отростка.

Внедрение фага внутрь клетки. Под действием фермента лизоцима, который находится в хвостовом сегменте, в клеточной стенке бактерии образуется отверстие. Через это отверстие в ре­зультате сокращения хвостового чехла внутрь бактериальной клетки переходит ДНК фага. Белковый капсид остается снаружи.

Синтез ДНК и белка бактериофага. В клетке прекращается синтез бактериальных белков. Образуются фаговые ДНК, а на рибосомах бактерий синтезируются молекулы фагового белка.

Формирование фага. Сборка зрелых фагов из ДНК и капсида происходит в цитоплазме клетки. Выход зрелых фагов из клетки происходит при разрушении бактерий с помощью лизоцима, а затем зрелые фаги внедряются в новые клетки.

"Урожай" фага, в зависимости от его вида, составляет от 20 до 200 частиц. Весь цикл взаимодействия, занимающий от 10 минут до нескольких часов, называется литическим циклом, а фаг при таком взаимодействии - вирулентным.

В отличие от вирулентных, умеренные фаги не лизируют бактерии. Их геном, проникнув в клетку, встраивается в хромосому бактерии и в дальнейшем остается в хромосоме в виде профага и реплицируется вместе с ней. Бактерии, несущие профаг, называются лизогенными, а само явление - лизогенией. Лизогенные бактерии встречаются очень часто. Профаг, находясь в геноме бактерии, придает ей какие-либо новые свойства. Так, например, продукция экзотоксина у палочек дифтерии и ботулизма связана с наличием профага.

В определенных условиях (воздействия температуры, химических веществ и др.) профаги могут превратиться в вирулентные бактериофаги. Размножаясь, они лизируют бактерии и могут переходить в другие бактериальные клетки. При выходе из хромосомы профаг может захватить соседние гены бактериальной хромосомы и при заражении другой бактерии, встроившись в ее хромосому, передать эти гены. Передача генетического материала от одной бактерии к другой с помощью умеренного бактериофага называется трансдукцией. Таким образом, могут передаваться такие признаки, как устойчивость к антибиотикам, способность продуцировать какие-либо ферменты. Умеренные бактериофаги применяются в генетической инженерии в качестве век­тора - переносчика генов.

Практическое значение бактериофагов

Препараты бактериофагов применяются для диагностики, профилактики и лечения. Фагодиагностика основана на специфичности бактериофагов: видоспецифические бактериофаги лизируют только определенные виды бактерий. Более того, бактерии одного и того же вида различаются по чувствительности к разным типовым бактериофагам, Таким образом можно с помощью набора типовых бактериофагов определять фаговары стафилококков, сальмонелл, вибрионов. Фаготипирование помогает установить источник инфекции и пути передачи.

Лечебно-профилактическое действие фагов основано на их литической активности.

Для получения препарата бактериофага культуру бактерий заражают бактериофагом. На следующий день лишрованную культуру фильтруют через бактериальный фильтр. К фильтрату в качестве консерванта добавляют хинозол.

Для количественной характеристики бактериофагов используют такой критерий, как титр бактериофага. Титр фага можно выразить двумя показателями:

1 наибольшее разведение препарата, при котором бактериофаг лизирует соответствующие бактерии:

2 количество активных корпускул бактериофага в 1 мл препарата.

Методы титрования бактериофага:

- метод серийных разведении в пробирках с жидкой питательной средой по Аппсльману;

- двуслойный агаровый метод, при котором подсчитывают число негативных колоний фага на фоне сплошного роста бактерий – метод Грациа.

Готовый жидкий препарат бактериофага должен быть совершенно прозрачным. При кишечных инфекциях препарат применяют вместе с раствором питьевой соды, так как кислое содержимое желудка разрушает бактериофаг. Препараты некоторых бактериофагов для инъекций и местного применения выпускают в ампулах. Для приема внутрь препараты бактериофагов выпускаются также в виде таблеток с кислотоустойчивым покрытием, которое в щелочной среде тонкого кишечника растворяется. В качестве покрытия применяется пектин или ацетилфталилцеллюлоза (ЛФП).

В нашей стране выпускаются препараты дизентерийного, сальмонеллезного, коли-протейного, стафилококкового и других бактериофагов, а также наборы типовых фагов для фаготипирования ста­филококков, брюшнотифозных и других бактерий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]