Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория для защиты лаб 1,2,4,5,6,15.doc
Скачиваний:
478
Добавлен:
12.03.2015
Размер:
10.44 Mб
Скачать

2.2.9. Неуравновешенные мосты

Возможность непосредственного отсчета температуры - преимущество неуравновешенного моста перед лабораторным уравновешенным мос­том.

На принципиальной схеме неурав­новешенного моста (рис. 15) в которой R1, R2 и R3 - постоянные сопротивления плеч моста; R - реостат; RK - контроль­ное сопротивление; Rt - сопротивление термо­метра; Iм - сила тока, протекаю­щего по рамке милливольтметра [1].

Рис. 15. Схема неуравновешенного

измерительного моста

Для контроля разности потен­циалов в схему моста параллельно термометру включается манганиновое контрольное сопротивление Rк, равное сопротивлению термометра при опре­деленной температуре, отмеченной красной чертой на шкале милливольт­метра [1].

Для контроля разности потенциалов Uab переключатель ста­вят в положение 2 и с помощью реостата R устанавливают стрелку мил­ливольтметра точно на красной черте. После этого переклю­чатель ставят в положение 1 и по шкале снимают отсчет, соответ­ствующий температуре термометра.

Неуравновешенные мосты питаются от батареи или от сети (через трансформатор и выпрямитель). Показания неуравновешенных мостов зависят от напряжения Uab,, поэтому они не используются для промышленных измерений. Эти мосты используются иногда в лабораторной практике, а также в измерительных схемах других приборов

В технике обычно применяют приборы, с помощью которых измерения производят лишь с определенной заранее заданной и установленной ГОСТом допустимой основной (при нормальных условиях) при­веденной относительной погрешностью. По ее величине измерительные при­боры делят на классы точности 0,05 — 4,0. Промышленные логометры и автоматические уравновешенные мосты в большин­стве случаев выпускаются с классами точности 0,5; 1,0; 1,5. Например, прибор класса 1,5 имеет максимально допустимую основную приведенную относительную погрешность ±1,5%. Класс точности прибора обычно указывают на его шкале.

2.2.10. Термопреобразователи с унифицированным токовым выходным сигналом. (тспу, тсму)

Для измерения температуры жидких, газообразных сыпучих и веществ активно используют термопреобразователи с унифицированным токовым выходным сигналом (рис.16).

Основные характеристики: диапазон измерения температуры от -50°С до +500°С; предел допускаемой основной погрешности 0,5%; выходной сигнал – (4-20)мА, (0-5)мА; напряжение питания – (18-36)В; потребляемая мощность - 0,9Вт; зависимость выходного сигнала от измеряемой температуры – линейная; схема включения – двухпроводная сопротивление нагрузки с учетом линии связи - 1,0 кОм.

Рис. 16. Схема

термопреобразователя

ТСПУ(ТСМУ)/1-0288

2.3. Манометрические термометры

Измерение температуры манометрическими термометрами основано на изменении давления рабочего вещества, находящегося в замкнутой системе, при изменении его температуры. Прибор состоит из термобаллона, капиллярной трубки и манометрической части. Вся система заполняется рабочим веществом. Термобаллон помещают в зону измерения температуры.

Манометрические термометры довольно широко применяются в химических производствах. Они просты по устройству, надежны в работе, при отсутствии электропривода взрывобезопасны, позволяют передавать показания на сравнительно большие расстояния (до 40-60м). Возможный диапазон их применения от –180 до +600˚С.

Термобаллоны обычно изготавливают из латуни, обладающей высокой теплопроводностью, а капилляр - из медной или стальной трубки с внутренним диаметром от 0.15 до 0.5 мм. Длина капилляра может быть различной (от 25 см до 60 м). Для защиты от механических повреждений капилляр часто помещают в защитную оболочку из оцинкованного стального провода.

По заполнению системы различают следующие типы манометрических термометров:

  1. газонаполненные (газовые) термометры. В которых вся система, т.е. термобаллон, капилляр и манометрическая пружина, заполнена газом под некоторым начальным давлением.

  2. жидкозаполненные (жидкостные) термометры, в которых система заполнена жидкостью.

  3. паро-жидкостные термометры, в которых термобаллон частично заполнен жидкостью, а все остальное пространство системы заполнено парами этой жидкости или ее конденсатами.