Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЕРЕНОС ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНЫ.rtf
Скачиваний:
77
Добавлен:
15.03.2015
Размер:
16.37 Mб
Скачать

Пассивный антипорт анионов нсо3- и Сl- через мембрану эритроцитов.

А - когда эритроцит находится в венозных капиллярах, анион НСО3-, образованный при диссоциации угольной кислоты, по градиенту концентрации выходит в кровь. В обмен на каждый транспортируемый из клетки ион НСО3- транслоказа переносит в эритроцит ион Cl-;

Б - когда кровь достигает лёгких транслоказа производит обмен ионами в противоположных направлениях. Такая "челночная" система работает очень быстро и обеспечивает удаление СО2 из организма и в то же время сохранение оптимального значения рН в клетке.

Внутренняя митохондриальная мембрана содержит много транслоказ, осуществляющих пассивный антипорт.

Некоторые митохондриальные переносчики.

В процессе такого переноса происходит эквивалентный обмен ионами, но не всегда эквивалентный обмен по заряду.

Кроме пассивного транспорта веществ, в клетках есть белки, активно перекачивающие определённые растворённые в воде вещества (например диффузия Н+, Са2+, Na+, K+) против их градиента, т.е. из меньшей концентрации в область большей. Этот процесс, называемый активным транспортом, осуществляется всегда с помощью белков-переносчиков и происходит с затратой энергии.

Строение и функционирование белковых каналов

Каналы в мембране формируются интегральными белками, которые "прерывают" липидный бислой, образуя пору, заполненную водой. Стенки канала "выстилаются" радикалами аминокислот этих белков.

Если каналы различают вещества только по размеру и пропускают все молекулы меньше определённой величины, по градиенту концентрации, т.е. служат фильтрами, то их называют "неселективные каналы", или "поры". Такие поры есть в наружной мембране митохондрий, где молекулы белка порина образуют широкие гидрофильные каналы. Через них могут проходить все молекулы с молекулярной массой 10 кД и меньше, в том числе и небольшие белки.

Селективные каналы, как правило, участвуют в переносе определённых ионов. Ионная селективность (избирательность) каналов определяется их диаметром и строением внутренней поверхности канала. Например, катионселективные каналы пропускают только катионы, так как содержат много отрицательно заряженных аминокислотных остатков.

Открытие или закрытие селективных каналов регулируется либо изменением концентрации специфических регуляторов, таких как медиаторы, гормоны, циклические нуклеотиды, NO, G-белки, либо изменением трансмембранного электрохимического потенциала.

Регулируемый канал. Заштрихованные квадраты - регуляторы, светлые кружки - переносимые ионы.

Воздействие регуляторного фактора вызывает конформационные изменения каналообразующих белков, канал открывается и ионы проходят по градиенту концентрации. Транспорт веществ через каналы не приводит к конформационным изменениям белков и зависит только от разности концентраций веществ по обе стороны мембраны. Поэтому скорость транспорта веществ через такие каналы может достигать 106-108 ионов в секунду.

Строение и функционирование белков-переносчиков, осуществляющих активный транспорт

Перенос некоторых лигандов (ионов, глюкозы, аминокислот) через мембраны происходит против градиента концентрации и сопряжён с затратой энергии (активный транспорт). Перенос лигандов через мембрану, связанный с затратой энергии АТФ, называют "первично-активный транспорт".

Первично-активный транспорт происходит против градиента концентрации, т.е. с затратой энергии АТФ при участии транспортных АТФаз (ионных насосов), например, Н+-АТФазы, Са2+-АТФазы, Na+-АТФазы, K+-АТФазы. АТФазы различаются по ионной специфичности, количеству переносимых ионов, направлению транспорта. В результате функционирования АТФаз переносимые ионы накапливаются с одной стороны мембраны.

Н+-АТФазы функционируют как протонные насосы. С их помощью создается кислая среда в лизосомах клетки.

Na+, К+-АТФ-аза

Этот фермент-переносчик катализирует АТФ-зависимый транспорт ионов Na+ и K+ через плазматическую мембрану. Nа+, К+-АТФаза состоит из субъединиц α и β; α - каталитическая большая субъединица, a β - малая субъединица (гликопротеин). Активная форма транслоказы - тетрамер (αβ)2.

Строение и функционирование Nа+, К+-АТФ-азы плазматической мембраны. 1 - три иона натрия связываются специфическим центром транслоказы; 2 - изменение конформации транслоказы, вызванное присоединением 3 ионов Na+, приводит к активации каталитической субъединицы и увеличению сродства активного центра к субстрату (АТФ). Протекает реакция аутофосфорилирования по карбоксильной группе аспарагиновой кислоты; 3 - аутофосфорилирование изменяет заряд и конформацию транслоказы, она закрывается с внутренней стороны мембраны и открывается с наружной, уменьшается сродство к ионам натрия и они диссоциируют от переносчика; 4 - Na+, К+-АТФаза открытая с наружной стороны мембраны имеет специфический центр связывания для 2 К+; Присоединение двух ионов калия к фосфорилированной транслоказе вызывает изменение конформации и появление аутофосфатазной активности. Протекает реакция аутодефосфорилирования; 5 - дефосфорилирование изменяет заряд и конформацию транслоказы, она закрывается с наружной стороны мембраны и открывается с внутренней, уменьшается сродство к ионам калия и они диссоциируют от Na+, К+-АТФазы; 6 - АТФаза возвращается в первоначальное состояние.

Na+, К+-АТФаза отвечает за поддержание высокой концентрации К+ в клетке и низкой концентрации Na+. Так как Na+-АТФаза выкачивает три положительно заряженных иона, а закачивает два, то на мембране возникает электрический потенциал с отрицательным значением на внутренней части клетки по отношению к её наружной поверхности.

Са2+-АТФаза

В цитозоле "покоящихся" клеток концентрация Са2+ составляет ~10-7 моль/л, тогда как вне клетки она равна ~2 10-3 моль/л. Поддерживает такую разницу в концентрации система активного транспорта ионов кальция; ее основные компоненты - кальциевые насосы - Са2+-АТФ-азы и Na+,Ca2+-обменники.

Са2+-АТФаза локализована не только в плазматической мембране, но и в мембране ЭР. Фермент состоит из десяти трансмембранных доменов, пронизывающих клеточную мембрану. Между вторым и третьим доменами находятся несколько остатков аспарагиновой кислоты, участвующих в связывании кальция. Область между четвёртым и пятым доменами имеет центр для присоединения АТФ и аутофосфорилирования по остатку аспарагиновой кислоты. Са2+-АТФазы плазматических мембран некоторых клеток регулируются белком кальмодулином. Каждая из Са2+-АТФаз плазматической мембраны и ЭР представлена несколькими изоформами.

Последовательность событий в процессе работы Са2+-АТФ-азы.

1 - связывание двух ионов кальция участком АТФазы, обращённой в цитозоль; 2 - изменение заряда и конформации фермента (АТФазы), вызванное присоединением двух ионов Са2+, приводит к повышению сродства к АТФ и активации аутофосфорилирования; 3 - аутофосфорилирование сопровождается информационными изменениями, АТФаза закрывается с внутренней стороны мембраны и открывается с наружной; 4 - происходит снижение сродства центров связывания к ионам кальция и они отделяются от АТФазы; 5 - аутодефосфорилирование активируется ионами магния, в результате Са2+-АТФ-аза теряет фосфорный остаток и два иона Мg2+; 6 - АТФаза возвращается в исходное состояние.

Нарушение активности Са2+-АТФ-азы при патологии.

Одна из причин нарушения работы Са2+-АТФазы - активация перекисного окисления липидов (ПОЛ) мембран. Окислению подвергаются как ацильные остатки жирных кислот в составе фосфолипидов, так и SH-гpyппы в активном центре фермента. Нарушение структуры липидного окружения и структуры активного центра приводит к изменению конформации АТФазы, потере сродства к ионам кальция и способности к аутофосфорилированию. АТФаза перестаёт выкачивать ионы кальция из цитозоля клетки, повышается концентрация внутриклеточного кальция, Са2+ усиливает мышечное сокращение, возрастает тонус мышечной стенки, что приводит к повышению АД. Не последнюю роль нарушение функционирования Са2+-АТФазы играет в развитии атеросклероза, рака, иммунных патологий.

2. Вторично-активный транспорт происходит за счет затрат энергии градиент концентрации одного из переносимых веществ. Присоединение в активный центр белка-переносчика вещества, концентрация которого выше, изменяет конформацию и увеличивает сродство к соединению, которое проходит в клетку против градиента концентрации. Перенос некоторых растворимых веществ против градиента концентрации зависит от одновременного или последовательного переноса другого вещества по градиенту концентрации в том же направлении (активный симпорт) или в противоположном (активный антипорт). В клетках человека ионом, перенос которого происходит по градиенту концентрации, чаще всего служит Na+.

Примером такого типа транспорта может служить Na+,Са2+-обменник плазматической мембраны (активный антипорт), ионы натрия по градиенту концентрации переносятся в клетку, а ионы Са2+ против градиента концентрации выходят из клетки.

Натрий-зависимый транспорт ионов кальция.

A - Na+-зависимый переносчик ионов кальция; Б - Na+, К+-АТФ-аза.

По механизму активного симпорта происходят всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы, аминокислот клетками почек

Механизм активного симпорта.

А - Na+ и глюкоза связываются в разных центрах транспоказы. Ионы стремятся войти в клетку по градиенту концентрации и "тащат" глюкозу за собой, если концентрация Na+ вне клетки уменьшается, транспорт глюкозы в клетки снижается; Б - ионы натрия, проникающие в клетку вместе с глюкозой, "выкачиваются" обратно Nа++-АТФ-азой, поддерживающей градиент концентрации Na+ и контролирующей транспорт глюкозы.

Перенос через мембрану макромолекул и частиц: эндоцитоз и экзоцитоз

Траспортные белки обеспечивают перемещение через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или ещё более крупные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

Перенос макромолекул, например белков, нуклеиновых кислот, полисахаридов из среды в клетку происходит вместе с частью плазматической мембраны и называется эндоцитозом. Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или обломки клеток. Захват больших частиц осуществляется в основном специализированными клетками - фагоцитами.

Поглощение жидкости и растворённых в ней веществ с помощью небольших пузырьков называют "пиноцитоз". Усвоение веществ механизмом эндоцитоза (пиноцитоза) характерно для всех клеток.

Эндоцитоз происходит в определенных участках плазматической мембраны – окаймленных ямках.

На долю окаймлённых ямок приходится всего 1-2% общей площади мембраны. Белок клатрин образует решётчатые структуры, связанные с углублениями на поверхности плазматической мембраны.

Окаймлённые ямки втягиваются в клетку, сужаются у основания, отделяются от мембраны, образуя окаймлённые пузырьки (пиноцитозные пузырьки). Время жизни окаймлённых ямок невелико, они формируются в течение минуты, затем совершают цикл эндоцитоза.

Эндоцитоз, происходящий в участием рецепторов, встроенных в окаймленные ямки, позволяет клеткам поглощать специфические вещества и называется рецептор-зависимым эндоцитозом.

Макромолекулы или частицы связываются рецепторами и накапливаются в окаймлённой ямке. Затем следует погружение в клетку и отделение эндоцитозного пузырька, в составе которого находится поглощённое вещество, мембранные компоненты окаймлённой ямки и рецептор. В разные окаймлённые ямки могут быть встроены разные рецепторы.

Примером рецептор-зависимого эндоцитоза может служить поступление в клетку холестерола в составе липопротеинов низкой плотности (ЛПНП).

Положение рецепторов ЛПНП в цитоплазматической мембране.

А - положение рецепторов ЛПНП в окаймлённой ямке; Б - положение дефектных рецепторов ЛПНП вне окаймлённой ямки.

Количество рецепторов в окаймлённой ямке плазматической мембраны варьирует в зависимости от потребности клетки в холестероле. Нарушение структуры рецепторов ЛПНП (мутации в гене) не позволяет им встраиваться в плазматическую мембрану в область окаймлённой ямки. Положение рецептора вне окаймлённой ямки не снижает его комгшементарность к ЛПНП, но эндоцитоз комплекса рецептор-ЛПНП не происходит.

Экзоцитоз

Макромолекулы, например гормоны, пищеварительные ферменты, белки внеклеточного матрикса, мембранные везикулы, секретируются в кровь или межклеточное пространство путем экзоцитоза. Этот способ транспорта позволяет выводить из клетки вещества, которые накапливаются в секреторных гранулах. В большинстве случаев экзоцитоз регулируется путем изменения концентрации ионов кальция в цитоплазме клеток. В ходе экзоцитоза содержимое секреторных пузырьков выделяется во внеклеточное пространство, когда они сливаются с плазматической мембраной.

В организме имеются как регулируемый, так и нерегулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков, упаковкой их в транспортные пузырьки в аппарате Гольджи и переносом к плазматической мембране для секреции. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.

Для регулируемой секреции характерны хранение приготовленных на экспорт молекул в транспортных пузырьках и их слияние с плазматической мембраной только при воздействии на клетку специфического стимула. С помощью регулируемой секреции происходят выделение пищеварительных ферментов в период переваривания пищи, а также секреция гормонов, нейромедиаторов и других биологически активных веществ. Пример такого типа секреции - выброс пептидного гормона инсулина в кровь после еды. Стимулом к секреции инсулина, хранящегося в секреторных гранулах β-клеток островков Лангерханса поджелудочной железы, является повышение концентрации глюкозы в крови и β-клетках.

Регуляция секреции инсулина.

Повышение концентрации глюкозы приводит к увеличению соотношения АТФ/АДФ в В-клетке, закрытию АТФ-зависимых калиевых каналов, деполяризации, раскрытию потенциалзависимых кальциевых каналов. Повышение концентрации ионов калия и кальция в В-клетке инициирует слияние секреторных пузырьков (инсулинсодержащих гранул) с мембраной и выделение содержимого пузырьков (инсулина) из клетки.

Механизмы переноса веществ через мембраны по градиенту концентрации

Облегчённая диффузия (унипорт) глюкозы в эритроциты с помощью ГЛЮТ-1 (S - молекула глюкозы).

Типы (виды) облегчённой диффузии с участием переносчиков (транслоказ). S1, S2- разные молекулы.

Пассивный антипорт анионов НСО3- и Сl- через мембрану эритроцитов.

Митохондриальные переносчики.

Строение и функционирование Nа++-АТФ-азы плазматической мембраны.

Механизм функционирования Са2+-АТФазы

Са2+-канал мембраны ЭПР, регулируемый инозитол-1,4,5-трифосфатом

16