Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / Нормальная физиология / Проничев_И_В_Лекции_по_физиологии_центральной_нервной_системы.doc
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
4.02 Mб
Скачать

Лекция 13.Промежуточный мозг.

13.1. Структура промежуточного мозга

Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря и образует стенки третьего мозгового желудочка. Топографически и функционально промежуточный мозг подразделяется на эпиталамус, таламус и гипоталамус.

Эпиталамус, или надталамическая область, состоит из расположенного под мозолистым телом свода и из железы внутренней секреции эпифиза, которые формируют верхнюю стенку третьего желудочка. Таламус, или зрительный бугор, представляет собой состоящее из скопления серого вещества объемистое тело яйцевидной формы. Нижней и латеральной поверхностью таламус сращен с соседними частями мозга. Медиальная поверхность зрительного бугра образует боковую стенку полости третьего желудочка. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути.

Дно третьего желудочка формирует группа структур, которые объединяют под названием гипоталамуса или подбугорья. Гипоталамус содержит большое количество ядер и является центром регуляции висцеральных функций организма.

13.1.1. Морфофункциональная организация таламуса

Нервные клетки таламуса группируются в большое количество ядер (до 40), которые топографически разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.

В специфических, или проекционных, ядрах таламуса происходит синаптическое переключение сенсорной информации с аксонов восходящих афферентных путей на следующие, конечные нейроны, отростки которых идут в соответствующие сенсорные проекционные области коры больших полушарий. Повреждение специфических ядер приводит к необратимому выпадению определенных видов чувствительности. Эти экспериментальные факты свидетельствуют о том, что специфические ядра являются передаточной станцией на пути афферентных импульсов от периферических рецепторов к коре больших полушарий.

Среди основных проекционных ядер таламуса можно выделить вентробазальное ядро, которое является специфическим ядром соматосенсорной системы. Оно разделяется на две части - вентральное постериолатеральное ядро, к которому подходят восходящие волокна спиноталамического тракта и системы медиальной петли несущие информацию от кожных рецепторов туловища, проприо-цепторов мышц и суставного аппарата, и вентральное постерио-медиальное ядро, к которому подходят соответствующие пути от ядер тройничного нерва, осуществляющего иннервацию лицевой части головы.

Микроэлектродные исследования нейронов вентробазального комплекса показали, что данное ядро, как и прочие специфические ядра, организовано по топическому принципу. Суть этого принципа состоит j в том, что каждый нейрон активируется раздражением рецепторов определенного участка кожи, причем смежные участки туловища проецируются на смежные части вентробазального комплекса.

Специфичность данных нейронов проявляется также в том, что каждый из них возбуждается одним типом рецепторов. Соматотопический принцип организации сохраняется и на более высоком уровне в соматосенсорной проекционной области коры больших полушарий (постцентральная извилина), с которой вентробазальный комплекс связан восходящими и нисходящими путями.

Специфическим ядром зрительной сенсорной системы является латеральное коленчатое тело (ЛКТ), имеющее прямые связи с затылочными (зрительными) проекционными областями коры больших полушарий.

Латеральное коленчатое тело имеет слоистую структуру и организовано также по топическому принципу. Аксоны, идущие в ЛКТ из зрительного тракта, распределяются в нем с поразительной четкостью: три слоя ЛКТ связаны с ипсилатеральным глазом, а три остальные - с контралатеральным. В каждом из слоев ЛКТ аксоны зрительного тракта вступают в синаптический контакт с четко ограниченными группами клеток. Нейроны ЛКТ обладают концентрическими рецептивными полями, центр и периферия которых антагонистичны и по-разному реагируют на изменение освещенности. Рецептивное поле нейрона ЛКТ представляет собой концентрически организованную совокупность рецепторов сетчатки, имеющую либо возбуждающий (при включении света) центр и периферическую тормозную часть, либо, напротив, тормозный центр и возбуждающую данный нейрон ЛКТ периферическую область.

Такая организация рецепторного поля позволяет нейронам ЛКТ хорошо реагировать на контраст при определении границы между темным и светлым и на суммарную яркость светового стимула.

У млекопитающих некоторые нейроны ЛКТ обладают цветоспецифичными рецепторными полями и могут возбуждаться или, наоборот, тормозиться в зависимости от длины волны светового стимула. Таким образом, нейроны ЛКТ, также как и нейроны сетчатки, принимают участие в анализе зрительной информации. Об этом же свидетельствует наличие тормозных процессов в нейронах ЛКТ, субстратом которых являются цепи отрицательной обратной связи, образованные возвратными коллатералями аксонов этих клеток и промежуточными нейронами, имеющими тормозные окончания. По всей вероятности, возникающие в нейронах ЛКТ тормозные постсинаптические потенциалы служат для подавления следовых эффектов и всех побочных воздействий, которые мешают передаче сигнала через данный канал.

Восходящие пути слуховой системы, идущие из нижних бугров четверохолмия и по волокнам латеральной петли, проецируются в специфическое таламическое ядро - медиальное коленчатое тело (МКТ), от которого начинается тракт, достигающий первичной слуховой коры в верхней части височных долей.

Медиальное коленчатое тело состоит из мелкоклеточной и крупноклеточной частей и обладает тонотопической специализиацией своих нейронов. Так, например, нервные клетки мелкоклеточной части МКТ имеют довольно узкую настройку на восприятие звуков различной высоты и принимают участие в анализе и передаче акустической информации.

Таким образом, по справедливому выражению одного из исследователей таламуса

А. К. Уолкера, "таламус является посредником, в котором сходятся все раздражения от внешнего мира и, видоизменяясь здесь, направляются к подкорковым и корковым центрам...".

В специфические ядра таламуса проецируются афференты не только от экстерорецепторов и рецепторов двигательного аппарата. Электрофизиологические исследования показали, что в вентроба-зальном комплексе таламуса имеются области проекций блуждающего и чревного нервов, чувствительные волокна которых несут информацию от интероцепторов. В то же время таламус, как над-сегментарный центр рефлекторной деятельности, имеет связи с гипоталамусом, где сосредоточены главные вегетативные центры. Эти снязи характерны для передней группы ядер таламуса и создают материальную предпосылку для участия этой структуры в системе регуляции висцеральных функций организма.

Следующую функциональную группу ядер таламуса составляют так называемые ассоциативные ядра. В отличие от специфических ядер они не могут быть отнесены к какой-либо одной сенсорной системе и получают афферентные импульсы от специфических проекционных ядер. Три ядра этой группы имеют связи с главными ассоциативными областями коры: ядро подушки связано с ассоциативной зоной теменной и височной коры, заднее латеральное ядро - с теменной корой, медиальное дорсальное ядро - с лобной долей. Четвертое ядро - переднее - имеет связи с лимбической корой больших полушарий. По-видимому, ассоциативные ядра участвуют в высших интегративных процессах, однако их функция изучена еще недостаточно.

К моторным ядрам таламуса относится вентролатеральное ядро, которое имеет вход от мозжечка и базальных ганглиев и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений, и, как показал материал клиники, разрушение некоторых его участков ослабляет симптомокомплекс болезни Паркинсона.

Наконец, последнюю большую группу ядер таламуса образуют неспецифические ядра, которые функционально связаны с ретикулярной формацией ствола. К числу этих ядер относится срединная и интроламинарная группа ядер таламуса, которая получает афферентный вход от волокон, восходящих из ретикулярной формации, и, кроме того, имеет двусторонние связи со специфическими ядрами таламуса. В отличие от специфических ядер с локальными проекциями в коре филогенетически более древние неспецифические ядра обнаруживают диффузные проекции во все области коры . Этой структурной особенностью обусловлены их название и функция, которая состоит в регуляции возбудимости и электрической активности корковых нейронов.

Доказательства влияния неспецифических ядер таламуса на кору впервые были получены американскими исследователями Э. Демпси и Р. Моррисоном в 1942 г. Они показали, что при электрическом раздражении неспецифических ядер с ритмом 6-12 имп/с почти на всей поверхности коры ипсилатерального полушария регистрируются постепенно увеличивающиеся по амплитуде негативые волны, очень сходные с альфа-ритмом электроэнцефалограммы. Эти негативные волны появляются с латентным периодом 25 мс и более на 2-3-й стимул, достигают максимальной амплитуды на 5-6-й стимул, а затем начинают постепенно уменьшаться вплоть до полного исчезновения. Если раздражение продолжается, то негативные волны появляются вновь в такой же последовательности. Эта электрофизиологическая реакция была названа рекруитирующим ответом или реакцией вовлечения.

В отличие от первичных ответов, которые регистрируют при раздражении специфических ядер, реакция вовлечения характеризуется большим латентным периодом, нарастанием и снижением амплитуды и отсутствием локальности или диффузностью вне связи с какой-либо специфической областью коры. Дальнейший анализ этого электрофизиологического феномена показал, что периодическое увеличение и уменьшение негативных волн реакции вовлечения обусловлено лучшей или худшей синхронизацией активности таламических и корковых нейронов, а также суммацией постсинаптических потенциалов в большем или меньшем количестве нейронов. Уровень синхронизации может определяться динамикой возбуждающих и тормозных процессов при таламокор-тикальных циклических взаимодействиях.

Наличие этих взаимодействий используют для объяснения природы ритмической активности коры больших полушарий и, в частности, происхождения альфа-ритма электроэнцефалограммы.

При сопоставлении функций специфических и неспецифических ядер таламуса возникает резонный вопрос о взаимодействии этих двух систем, которые могут влиять на одни и те же нейроны коры больших полушарий. Как показали электрофизиологические исследования, восходящие влияния неспецифических ядер таламуса проявляются не в вызове разряда коркового нейрона, а в изменении его возбудимости. Неспецифические влияния из таламуса, повышая возбудимость корковых нейронов, облегчают их деятельность, при этом ответы корковых нейронов на импульсы, приходящие из специфических проекционных ядер, усиливаются. Вместе с тем неспецифические влияния могут иметь и противоположный знак и обнаруживать угнетающее действие на разряды корковых нейронов.

Существует точка зрения, что неспецифические ядра включены в восходящую активирующую систему и являются посредниками между корой и ретикулярной формацией ствола, которая получает информацию от всех органов чувств. Таким образом, неспецифические ядра передают активирующие влияния ретикулярной формации и участвуют в поддержании оптимального тонуса коры. Однако эта точка зрения не является общепризнанной, и некоторые исследователи рассматривают ретикулярную формацию и неспецифические ядра таламуса как две раздельные системы, контролирующие возбудимость корковых нейронов.

Обсуждая таламокортикальные взаимодействия, было бы упрощением рассматривать их как односторонние. Кора, в свою очередь, может оказывать тормозные и облегчающие влияния на таламические ядра. Эти влияния могут распространяться на специфические ядра по прямым кортикоталамическим путям и на неспецифические через кортикоретикулоталамические связи. Так, например, раздражение сенсомоторной зоны коры угнетает на длительное время возникновение реакции вовлечения. Эти факты свидетельствуют о наличии между таламусом и корой больших полушарий двусторонних циклических связей, которые играют важную роль в интегра-тивной деятельности мозга. Не случайно таламокортикальная система связана с регуляцией таких физиологически важных состояний, как смена сна и бодрствования, сохранение сознания, развитие процессов внутреннего торможения.