Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Polchem.doc
Скачиваний:
261
Добавлен:
01.05.2015
Размер:
666.11 Кб
Скачать

Радикальная сополимеризация

Все описанные выше закономерности были рассмотрены на примерах полимеризации одного мономера (гомополимеризации). Но, как известно, широко используется и сополимеризация – совместная полимеризация двух или трех мономеров. Она проводится для получения полимеров с более широким спектром свойств, для получения материалов с заранее заданными свойствами, а также в фундаментальных исследованиях для выяснения реакционной способности мономеров. Продуктами сополимеризации являются сополимеры.

В принципе механизм радикальной сополимеризации вполне аналогичен механизму радикальной гомополимеризации. Однако здесь возникает несколько проблем.

1) Возможность сополимеризации – будут ли включаться в полимерную цепь звенья обоих (или трех) полимеров, или каждый мономер будет полимеризоваться отдельно и образуется смесь гомополимеров.

2) Соотношение между составом сополимера и составом взятой для процесса смеси мономеров. Здесь имеется в виду дифференциальный состав сополимера, т.е. его состав в данный момент (если брать интегральный состав, т.е. состав всей массы сополимера, то ясно, что при большой глубине процесса он примерно совпадет с составом смеси мономеров, однако при разных глубинах процесса могут образовываться макромолекулы с разным соотношением мономерных звеньев).

Если дифференциальный состав сополимера совпадает с составом взятой для полимеризации мономерной смеси, то сополимеризацию называют азеотропной. К сожалению, случаи азеотропной сополимеризации достаточно редки; в большинстве случаев дифференциальный состав сополимера отличается от состава смеси мономеров. Это означают, что в процессе полимеризации мономеры расходуются не в той пропорции, в которой они взяты; один из них расходуется быстрее другого, и по ходу реакции его необходимо добавлять для поддержания постоянного состава смеси мономеров. Отсюда ясно, сколь важно не только качественное, но и количественное решение этой проблемы.

3) Характер структуры получаемого сополимера, т.е. образуется ли статистический, чередующийся или блок-сополимер (см. стр. 7-8).

Решение всех этих проблем вытекает из анализа кинетики формирования макромолекулы сополимера, т.е. стадии роста цепи при сополимеризации (т.к. макромолекула сополимера образуется именно на этой стадии).

Рассмотрим наиболее простой случай сополимеризации двух мономеров, условно обозначив их символами А и В. Стадия роста цепи в этом случае, в отличие от гомополимеризации, включает элементарные реакции не одного, а четырех типов: действительно, в ходе роста образуются «живые» цепи двух типов – с концевым радикальным звеном мономера А [~A•, допустим, ~CH2–CH(X)•] и с концевым радикальным звеном мономера В [~B•, допустим ~CH2–CH(Y)•] и каждый из них может присоединяться к «своему» и «чужому» мономеру:

Дифференциальный состав сополимера зависит от соотношения скоростей этих четырех реакций, константы скоростей которых обозначены как k11…k21.

Мономер А входит в состав сополимера по реакциям 1) и 4); поэтому скорость расходования этого мономера равна сумме скоростей этих реакций:

Мономер В входит сополимер по реакциям 2) и 3), и для него:

Дифференциальный состав сополимера равен отношению скоростей вхождения в сополимер обоих мономеров:

Вэто уравнение входят трудно определяемые концентрации радикалов. Их можно исключить из уравнения, если ввестиусловие квазистационарности: концентрации обоих типов радикалов (~A• и ~B•) постоянны; как при гомополимеризации, условие квазистационарности выполняется только при малых глубинах процесса. Из этого условия следует, что скорости взаимного превращения обоих типов радикалов одинаковы. Поскольку такие превращения происходят по реакциям 2 и 4, то:

Подставляя полученное выражение для [A•] в уравнение дифференциального состава полимера, мы сокращаем в нем [B•] и, после ряда преобразований получаем:

Это уравнение носит названиеуравнения Мейо-Льюиса (иногда его называют уравнением Мейо). Это уравнение отражает зависимость дифференциального состава сополимера от состава мономерной смеси и от величин r1 и r2. Параметры r1 и r2 называются константами сополимеризации. Физический смысл этих констант вытекает из их определения: каждая из них выражает сравнительную активность каждого из радикалов по отношению к «своему» и «чужому» мономеру (константа r1 – для радикала ~A•, константа r2 – для радикала ~B•). Если радикал легче присоединяется к «своему» мономеру, чем к «чужому», ri > 1, если легче к «чужому», ri < 1. Иначе говоря, константы сополимеризации характеризуют сравнительную реакционнную способность мономеров.

Левая часть уравнения Мейо-Льюиса – дифференциальный состав сополимера. В правой части можно выделить два сомножителя: 1) состав мономерной смеси [A]/[B]; 2) сомножитель, включающий константы сополимеризации r1[A] + [B]/r2[B] + [A] = D (обозначим его символом D). Легко заметить, что при D=1 d[A]/d[B] = [A]/[B], т.е. сополимеризация азеотропна. Как уже упоминалось выше, случаи азеотропной сополимеризации достаточно редки, т.е. в большинстве случaев D ≠ 1. Таким образом, сомножитель D и есть тот фактор, который определяет отличие дифференциального состава сополимера от состава смеси мономеров. Если D > 1, то сополимер обогащен мономером А по сравнению с исходной смесью (т.е. мономер А расходуется в большей пропорции, чем мономер В). При D < 1, напротив, быстрее расходуется мономер В.

Величина сомножителя D полностью определяется величинами констант сополимеризации; следовательно именно константы сополимеризации определяют соотношение дифференциального состава сополимера и состава смеси мономеров, взятой для реакции.

Знание величин констант сополимеризации позволяет также судить о структуре полученного сополимера, а также о возможности или невозможности самой сополимеризации.

Рассмотрим основные варианты сополимеризации, определяемые величинами констант сополимеризации. Их удобно представить графически в виде кривых зависимости дифференциального состава сополимера от состава взятой для реакции смеси мономеров (рис. 3).

Рис. 3. Зависимость дифференциального состава сополимера от состава смеси мономеров.

1. r1 = r2 = 1. В этом случае d[A]/d[B] = [A]/[B], т.е. при любом составе смеси мономеров происходит азеотропная сополимеризация. Это – редкий вариант. Графически он выражен пунктирной прямой 1 – линией азеотропа. Пример такой системы –сополимеризация тетрафторэтилена с хлортрифторэтиленом при 60 0С.

2. r1 < 1, r2 < 1 . Обе константы меньше единицы. Это означает, что каждый радикал предпочтительно реагирует с чужим мономером, т.е. можно говорить о повышенной склонности мономеров к сополимеризации.

А) Состав сополимера. Дифференциальный состав сополимера обогащен тем мономером, которого мало в смеси мономеров (кривая 2 на рис. 3). Это легко вывести из анализа сомножителя D в уравнении Мейо-Льюиса: при [A] << [B] D < 1, следовательно, d[A]/d[B] < [A[/[B], а при [B] << [A] D >1 и d[A]/d[B] > [A[/[B]. Кривая 2 пересекает линию азеотропа, т.е. при каком-то одном соотношении мономеров полимеризация азеотропна. Это соотношение легко вычислить, т.к. в этом случае D = 1; отсюда:

Б) Структура сополимера. Поскольку каждый радикал предпочтительно присоединяется к чужому мономеру, в сополимере наблюдается тенденция к чередованию. Если константы сополимеризации не намного меньше единицы, эта тенденция выражена не очень значительно, и сополимер ближе к статистическому, чем к чередующемуся [коэффициент микрогетерогенности КМ (стр. 7) ближе к 1, чем к 2]. Но чем меньше величина констант, тем в большей степени структура полимера приближается к чередующейся. Предельный случай – бесконечно малая величина обеих констант (r 1 → 0, r 2 → 0); это означает, что каждый радикал реагирует только с «чужим» мономером, иначе говоря, каждый из мономеров в отдельности не полимеризуется, но вместе они образуют сополимер. Естественно, такой сополимер имеет строго чередующуюся структуру. Примером такой системы является пара: 1,2-дифенилэтилен – малеиновый ангидрид. Известны также случаи, когда одна из констант бесконечно мала, а другая имеет конечную величину; в таких случаях только один из мономеров сам не полимеризуется, но может образовывать сополимер со вторым партнером. Пример такой системы – стирол-малеиновый ангидрид.

3. r1 > 1, r2 < 1 или r1 < 1, r2 > 1 . Одна из констант больше единицы, другая – меньше единицы, т.е. один из мономеров легче реагирует со «своим» мономером, а второй – с «чужим». Это означает, что один из мономеров активнее другого в ходе сополимеризации, т.к. легче другого реагирует с обоими радикалами. Следовательно, при любом составе мономерной смеси дифференциальный состав сополимера обогащен звеньями более активного мономера (на рис. 3 – кривые 3’ для r1 > 1, r2 < 1 и 3’’ для r1 < 1, r2 > 1). Азеотропная полимеризация здесь невозможна.

Структура макромолекул сополимера в этом варианте наиболее близка к статистической. Частный (и не столь редко встречающийся) случай: r1r2 = 1, т.е. r1 = 1/r2, при этом величины констант не намного больше или меньше единицы. Это означает, что сравнительная активность мономеров по отношению к обоим радикалам одинакова (например, при r1 = 2, r2 = 0,5 мономер А в 2 раза активнее мономера В в реакциях как с радикалом ~A▪, так и с радикалом ~B▪). В этом случае способность каждого мономера к вхождению в полимерную цепь не зависит от природы радикала, с которым он сталкивается и определяется просто вероятностью столкновений с каждым из радикалов. Поэтому структура сополимера будет чисто статистической (КМ ~ 1). Этот случай носит название идеальной сополимеризации – отнюдь не потому, что при этом образуется идеальный по свойствам сополимер (скорее наоборот), а по аналогии с понятием идеального газа, где, как известно, распределение частиц полностью статистическое. К наиболее известным примерам такой сополимеризации можно отнести сополимеризацию бутадиена со стиролом при 60 оС (r1 = 1,39, r2 = 0,78). В общем же случае вариант «одна константа больше единицы, другая меньше» – пожалуй, наиболее распространенный.

4. r1 > 1, r2 > 1. Обе константы больше единицы; каждый из радикалов предпочтительно реагирует со «своим» мономером; система обладает пониженной склонностью к сополимеризации. Что касается состава сополимера, то он должен быть обеднен тем мономером, которого мало в мономерной смеси. Эта картина прямо противоположна той, которая наблюдается для варианта r1 < 1, r2 < 1, а на рис. 3 была бы представлена кривой, зеркально подобной кривой 2. Но этот вариант сополимеризации встречается редко; можно разве что упомянуть сополимеризацию бутадиена с изопреном при 50 оС (r1 = 1,38, r2 =2,05), где константы лишь не намного больше единицы. Зато, к сожалению, встречаются случаи, когда обе константы бесконечно велики (r1→, r2); в этом случае сополимеризация просто не происходит, каждый из мономеров полимеризуется отдельно и образуется смесь двух гомополимеров (пример – пара: бутадиен – акриловая кислота). Весьма полезным был бы вариант, где константы имели бы большую, но конечную величину; в этом случае образовывались бы блок-сополимеры; к сожалению, таких случаев пока не найдено.

Термин «константы сополимеризации» нельзя воспринимать слишком буквально: их величины для данного мономера могут заметно меняться при изменении условий реакции, в частности, при изменении температуры. Например, при сополимеризации акрилонитрила с метилакрилатом при 50 оС r1 = 1,50, r2 = 0,84, а при 80 оС r1 = 0,50, r2 = 0,71. Поэтому, приводя значения констант, надо обязательно указывать условия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]