Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка Вероятн Методы Издат.docx
Скачиваний:
169
Добавлен:
12.03.2016
Размер:
731.95 Кб
Скачать

5.2. Выбросы случайной функции за заданный уровень

Необходимость определения вероятностных характеристик процесса пересечения с. функцией заданного уровня возникает, когда необходимо вычислить вероятность того, что в течение срока службы нагрузка, действующая на строительную конструкцию, не превысит допустимого уровня. Найдем вероятность пересечения случайной функцией (дифференцируемой) X(t) некоторого уровня а в течение времени t. Полагая скорость изменения с.ф. V(t)=dX(t)/dt постоянной в течение времени dt (с точностью до бесконечно малых второго порядка) условие пересечения функцией X(t) уровня а за малый промежуток времени dt:

X(t)<a; X(t)+V(t)dt>a (74.5)

или

a-V(t)dt<X(t)<a (V(t)>0) (75.5).

Вероятность этого события (выраженного условием (75)):

(76.5),

где p(x,V) - совместная плотность распределения с.ф. X(t) и V(t).

Ввиду близости пределов внутреннего интеграла (его заменили на p(a,V)Vdt - площадь прямоугольника) вероятность выброса:

(77.5).

Если разделить вероятность выброса Qa на время dt, в течение которого он ожидается, получится временная плотность вероятности выброса за уровень а в момент t (среднее число выбросов в единицу времени):

(78.5).

В случае стационарного с.п. X(t) и Y(t) - независимые с.ф. и (при том и известна автокорреляционная функция дляX(t) - KX()), следовательно,

p(x,V)=px(x)pV(V), (79.5)

где p(x,V) - совместная плотность распределения X(t) и Y(t); px(x)и pV(V) - соответственно плотности распределения X(t) и Y(t).

Тогда временная плотность вероятности выброса:

(80.5),

где - м.о. положительной скоростиV(t).

Для нормального распределения X(t):

(81.5)

распределение скорости V(t) будет также нормальным и независимым от распределения X(t): (82.5).

М.о. вследствие стационарности процесса. По (72).

Подстановка (82) и (81) в (80) даст для временной плотности вероятности выброса

(83.5).

Доказательство (83.5):

.

Заменим подынтегральное выражение,

,

тогда

,

и тогда .

Чем больше уровень а, тем меньше q(a). При очень малом значении q(a) выбросы можно рассматривать как редкие события, т.е. как независимые с.в.

Если число выбросов в течение времени t подчиняется закону Пуассона (66), тогда вероятность того, что за время T не произойдет ни одного выброса при условии, что X(t) – стационарная функция

Pt=exp[‑q(a)T] (84.5)

Это функция надежности.

В случае нестационарной функции

(85.5).

6. Приближенные методы нахождения распределения функций с.В.

    1. Метод Монте-Карло (метод рандомизации)

Есть система двух с.в. X и Y и p(x,y) – совместная плотность их распределения. Данный метод позволяет найти плотность распределения p(U), где U=U(X,Y).

Для одномерной с.в. Х, где р(х) – плотность ее распределения, можно найти p(U), причем U есть функция от X:

U=U(X)).

Суть метода в том, что аргументам X и Y даются случайные значения, распределенные согласно p(x,y). Случайные числа для значений аргументов можно брать по таблицам (есть таблицы для равномерного, нормального распределений, распределения Пирсона и т.д.) или определять на ЭВМ по специальной программе. Каждой случайной точке (xi,yj) соответствует определенное значение функции U(xi,yj). После реализации достаточно большого количества значений с.в. U их можно сгруппировать по интервалам n<U<(n+1) и построить ступенчатую аппроксимацию искомой кривой распределения p(U). Метод эффективен при использовании ЭВМ и при разрывности функции U(X,Y) (или при различном ее аналитическом описании в различных областях плоскости XOY).

Если есть функция двух с.в. U=U(X,Y) и p(x,y) – совместная плотность распределения X и Y, то

(получено из (40.3) и (29.3)), где x=(U,y).

(86.6)

и

(87.6),

но для двух аргументов.

    1. Метод статистических испытаний

Производится достаточно большое число статистических испытаний по схеме Бернулли, т.е. на каждом испытании генерируются случайные реализации всех исходных величин. Далее, например, если необходимо определить вероятность отказа системы, то испытания проводятся n раз, и каждый раз проверяется условие наступления отказа (например, Q>R, где Q – фактическая нагрузка на систему, R – прочность системы). Затем частота появления отказа: P*(A)=m/n, где m – количество отказов. При n -

P*(A)P(A),

где P(A) – вероятность наступления отказа, являющаяся достоверной величиной.

В данном методе необходимо оценить погрешность определения P*(A) при определенном количестве испытаний n или оценить количество испытаний n, необходимое для достижения частотой наступления отказа P*(A) достаточной достоверности.