Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
elektronika.docx
Скачиваний:
19
Добавлен:
13.11.2018
Размер:
212.4 Кб
Скачать

16.Полупроводники

Полупроводниками называют вещества которые по способности проводить электрический токо занимают место между проводниками и диэлектриками.К классу полупроводников относятся многие из извесных веществ.

ПОЛУПРОВОДНИКИ, в-ва, характеризующиеся увеличением электрич. проводимости с ростом т-ры. Хотя часто полупроводники определяют как в-ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 -104 Ом-1 см-1) и для хороших диэлектриков (s ! 10-12 — 10-10 Ом-1 см-1), сама величина электрич. проводимости не играет определяющей роли в полупроводниковых св-вах в-ва. На электрич. проводимость П оказывает влияние кроме т-ры сильное электрич. поле, давление, воздействие оптич. и ионизирующего излучения, наличие примесей и др. факторы, способные изменять структуру в-ва и состояние электронов. Это обстоятельство играет решающую роль в многочисленном и разнообразном использовании полупроводники

Полупроводниковые св-ва могут наблюдаться как в кристаллич. в-вах, так и в неупорядоченных системах - твердых аморфных в-вах (стеклах) и жидкостях. При этом решающим является характер хим. связи между частицами в ближнем порядке (первая координац. сфера). Существуют полупроводники с любым типом хим. связи, кроме чисто металлической и чисто ионной (т.е. ковалентной, ковалентно-металлич., ковалентно-ионной и т.полупроводники), причем ковалентная составляющая связи является обычно преобладающей. Широкое практич. применение получили полупроводники, являющиеся простыми в-вами (Ge, Si и др.), а также хим. соединения элементов III гр. периодич. системы с элементами V гр., напр. GaAs, GaP, InAs, CdTe и т.полупроводники (бинарные полупроводники). Все такие в-ва имеют кристаллич. решетку, подобную решетке алмаза, и наз. алмазоподобными полупроводники В Ge и Si в кристаллич. состоянии реализуется классич. двухэлектронная ковалентная связь. образованная перекрыванием sp3-гибридных орбиталей соседних атомов (см. Гибридизация атомных орбиталей). В соответствии с симметрией sp3-гибридных орбиталей расположение атомов в первой координац. сфере отвечает правильному тетраэдру. Такова же первая координац. сфера и у алмазоподобных полупроводники, однако в их структуре каждая ковалентная связь имеет ковалентно-ионный характер из-за заметной разности электроотрицательностей соседних атомов.

Повышение т-ры, а также др. внеш. воздействия (облучение светом или сильное электрич., поле) могут вызвать разрыв ковалентной связи, ионизацию атомного остова и образование своб. электрона. Этот электрон в условиях непрерывного обмена валентными электронами между атомами кристалла может переходить из ячейки в ячейку и переносить с собой отрицат. заряд, к-рый повсюду является избыточным, т.е. своб. электрон становится электроном проводимости. Недостаток электрона у разорванной ковалентной связи становится блуждающей по кристаллу дыркой, с к-рой связан единичный положит. заряд.

Электроны проводимости и дырки-два типа своб. носителей заряда в полупроводники В идеальных кристаллах их концентрации равны, т.к. превращение одного из валентных электронов в электрон проводимости неизбежно вызывает появление дырки. Электропроводность полупроводники ст, обусловленная электронами атомов данного в-ва (т. наз. собственная проводимость), определяется помимо концентрации носителей п их подвижностью m-отношением скорости направленного движения, вызванного электрич. полем (дрейфовой скоростью) uдр, к напряженности поля Е:

(е-элементарный электрич. заряд).

Подвижность разных носителей в идеальном кристалле определяется процессами рассеяния электронов на тепловых колебаниях решетки, поэтому ц сильно зависит от т-ры. При 300 К подвижность носителей в твердых полупроводники варьируется в широких пределах от 105 см2/с до 10-3 см2/с и меньше. В реальных кристаллах при пониж. т-рах, как правило, преобладает рассеяние носителей на дефектах кристаллич. структуры.

Примесная проводимость. В реальных кристаллах источниками своб. носителей заряда (носителей тока) м. б. дефекты кристаллич. структуры, напр. междоузельные атомы, вакансии, а также отклонения от стехиометрич. состава. Примеси и дефекты делятся на доноры и акцепторы. Доноры отдают в объем полупроводники избыточные электроны, создавая электронную проводимость (n-типа). Акцепторы захватывают валентные электроны собств. атомов полупроводники, в результате чего образуются дырки и возникает дырочная проводимость (р-типа). Типичными донорами в Ge и Si являются примесные атомы элементов V гр. (Р, As, Sb). В узле кристаллич решетки 4 из 5 валентных электронов такого атома образуют ковалентные связи с соседними атомами Ge или Si, а 5-й электрон оказывается слабо связанным с примесным ионом. Энергия ионизации примеси мала (~0,01 эВ в Ge и 0,04 эВ в Si), поэтому уже при 77 К в полупроводники появляются электроны проводимости в концентрации, определяемой содержанием примеси

Аналогично атомы III гр. (В, Al, Ga, In)-типичные акцепторы в Ge и Si. Дырка, к-рая остается в месте захваченного примесью валентного электрона Ge или Si, очень слабо связана с примесным ионом и при не очень низких т-рах легко превращ. в своб. носитель заряда (носитель тока). Во мн. бинарных полупроводники типа AIVBVI источниками дырок являются вакансии атомов AIV, а вакансии BVI источниками электронов проводимости. Электропроводность полупроводники, определяемая электронами примесных атомов, наз. примесной проводимостью, а введение определенных примесей для получения полупроводники с разл. требуемыми св-вами-легированием полупроводники

Зонная теория объясняет полупроводниковые св-ва твердых тел на основе одноэлектронного приближения и распределения электронных энергетич. уровней в виде разрешенных и запрещенных зон (см. Твердое тело). Энергетич. уровни электронов, участвующих в ковалентной связи, образуют верхнюю из заполненных разрешенных зон (валентную зону). Следующая по энергии разрешенная зона, уровни к-рой не заполнены электронами,-зона проводимости. Энергетич. интервал между "дном" Ес (минимумом энергии) зоны проводимости и "потолком" Еу (максимумом) валентной зоны наз. шириной запрещенной зоны DE (см. рис.). Для разных полупроводники ширина запрещенной зоны меняется в широких пределах. Так, при T: 0 К DE = 0,165 эВ в PbSe и 5,6 эВ в алмазе.

Валентная зона (кружки с плюсом дырки) и зона проводимости (кружки с минусом-электроны проводимости): Eс-дно зоны проводимости, EV-потолок валентной зоны, DE- ширина запрещенной зоны, D и A-донорные и акцепторные уровни соответственно.

Тепловое движение переносит часть электронов в зону проводимости; в валентной зоне при этом появляются дырки - квантовые состояния, не занятые электронами. Обычно электроны занимают уровни, расположенные вблизи дна Ес зоны проводимости, а дырки-уровни, расположенные вблизи потолка EV валентной зоны. Расстояния от этих уровней соотв. до Ес и ЕV порядка энергии теплового движения kТ, т. е. гораздо меньше ширины разрешенных зон (k-постоянная Больцмана). Локальные нарушения идеальности кристалла (примесные атомы, вакансии и др. дефекты) могут вызвать образование разрешенных локальных уровней энергии внутри запрещенной зоны.

При т-рах вблизи О К все собств. электроны полупроводники находятся в валентной зоне, целиком заполняя ее, а примесные электроны локализованы вблизи примесей или дефектов, так что своб. носители заряда отсутствуют. С повышением т-ры тепловое движение "выбрасывает" в зону проводимости преим. электроны примесных атомов-доноров, поскольку энергия ионизации донора меньше ширины запрещенной зоны. Концентрация электронов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях электроны наз. основными носителями в полупроводники n-типа, аналогично дырки - основными носителями в полупроводники р-типа. После полной ионизации всех доноров доминирующим процессом оказывается выброс из валентной зоны в зону проводимости собств. электронов П При нек-рой т-ре их концентрация в зоне проводимости становится сравнимой с концентрацией примесных электронов, а потом и во мн. раз большей. Это температурная область собств. проводимости полупроводники, когда концентрации электронов п и дырок р практически равны.

Возникновение пары электрон проводимости-дырка наз. генерацией носителей заряда. Возможен и обратный процесс-рекомбинация носителей заряда, приводящая к возвращению электрона проводимости в валентную зону и исчезновению дырки. Рекомбинация носителей может сопровождаться выделением избыточной энергии в виде излучения, что лежит в основе полупроводниковых источников света и лазеров

Электроны проводимости и дырки, возникновение к-рых явилось следствием тепловых флуктуации в условиях тер-модинамич. равновесия, наз. равновесными носителями заряда. При наличии внеш. воздействия на полупроводники (освещение, облучение быстрыми частицами, наложение сильного электрич. поля) может происходить генерация носителей заряда, приводящая к появлению избыточной (относительно термодинамически равновесной) их концентрации. При появлении в полупроводники неравновесных носителей возрастает число актов рекомбинации и захвата электрона из зоны проводимости на примесный уровень в запрещенной зоне ("захват" носителей). После прекращения внеш. воздействия концентрация носителей приближается к равновесному значению.

p-n-Переход в полупроводники В объеме одного и того же полупроводники возможно создание двух областей с разными типами проводимости, напр. легированием донорной примесью (p-область) и акцепторной примесью (n-область). Т к. в р-области концентрация дырок выше, чем в n-области, происходит диффузия дырок из р-области (в ней остаются отрицательно заряженные акцепторные ионы) и электронов из л-области (в ней остаются положительно заряженные донорные ионы). На границе областей с р- и n-проводимостью образуется двойной слой пространств, заряда, и возникающая электрич. разность потенциалов препятствует дальнейшей диффузии осн. носителей тока. В условиях теплового равновесия полный ток через p-n-переход равен нулю. Внеш. электрич. поле нарушает равновесие, появляется отличный от нуля ток через переход, к-рый с ростом напряжения экспоненциально возрастает. При изменении знака приложенного напряжения ток через переход может изменяться в 105-106 раз, благодаря чему p-n-переход является вентильным устройством, пригодным для выпрямления переменного тока (полупроводниковый диод). На св-вах p-n-перехода основано применение полупроводники в качестве разл. рода датчиков - т-ры, давления, освещения, ионизирующих излучений (см. Радиометрия).

Классификация. В соответствии с зонной теорией различие между полупроводники и диэлектриками чисто количественное - в ширине запрещенной зоны. Условно считают, что в-ва с DE > 2 эВ являются диэлектриками, с DE < 2 эВ - полупроводниками. Столь же условно деление полупроводники на узкозонные (DE < 0,1 эВ) и широкозонные. Важно, что один и тот же по хим. составу материал в зависимости от внеш. условий (прежде всего т-ры и давления) может проявлять разные св-ва. Наблюдается определенная зависимость между концентрацией электронов проводимости и устойчивостью кристаллич. структуры полупроводники В частности, алмазоподобная структура устойчива до тех пор, пока в зоне проводимости еще остаются вакантные энергетич. уровни. Если все они оказываются занятыми и имеет место вырождение энергетических уровней, первая координац. сфера, а за ней и весь кристалл претерпевают перестройку с образованием более плотной структуры, характерной для металлов. При этом концентрация электронов проводимости перестает расти с т-рой и собств. проводимость полупроводники падает. Классич. примером является олово, устойчивая полиморфная модификация к-рого (белое олово) при комнатной т-ре является металлом, а стабильное при т-рах ниже 13°С серое олово (ct-Sn)- узкозонный полупроводники С повышением т-ры и соответствующим изменением концентрации своб. электронов характерная для a-Sn алмазоподобная структура переходит в структуру с более плотной упаковкой атомов, свойственной металлам. Аналогичный переход полупроводники-металл наблюдается при высокой т-ре у Ge, Si и алмазоподобных бинарных полупроводники, к-рые при плавлении теряют полупроводниковые св-ва.\

17.не-могу-рашифровать-подчерк 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]