Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава_10.doc
Скачиваний:
31
Добавлен:
24.11.2018
Размер:
249.34 Кб
Скачать

10.5. Сверхтвердые инструментальные материалы (стм)

Сверхтвердыми принято считать инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа. Сверхтвердые материалы (СТМ), используемые для оснащения металлорежущих инструментов, разделяются на две основные группы:

  • СТМ на основе углерода – естественные и искусственные (поликристаллические) алмазы;

  • СТМ на основе нитрида бора (композиты).

Эти две группы СТМ имеют разные области применения, что обусловлено различием их физико-механических свойств и химического состава.

Природные алмазы обладают целым рядом важных свойств, необходимых для инструментальных материалов. Твердость природных алмазов выше твердости любого природного или синтетического материала. Они имеют низкий коэффициент трения, высокую теплопроводность. При заточке алмазных инструментов обеспечивается радиус округления режущей кромки в пределах долей микрометра, поэтому возможно получение практически идеально острой и прямолинейной режущей кромки, что особенно важно при прецизионной обработке.

Недостатками природных алмазов являются: анизотропия свойств, низкая прочность, сравнительно низкая (700-750ºС) теплостойкость и химическая активность к сплавам на основе железа при повышенных температурах, а также высокая стоимость.

Указанные свойства природных алмазов определяют область их эффективного использования: прецизионная обработка деталей из цветных металлов и неметаллических материалов. В частности, алмазные инструменты с радиусом округления режущей кромки 5-6 мкм используются при обработке металлических зеркал, дисков памяти и деталей оптоэлектроники с глубинами резания 12-20 мкм.

Ограниченные запасы природных алмазов, а также их высокая стоимость вызвали необходимость разработки технологии синтетических алмазов. Условия получения синтетических алмазов заключаются в воздействии на алмазообразующий материал, содержащий углерод (графит, сажа, древесный уголь). Воздействие происходит при давлении 60 000 атмосфер при температуре 2000-3000ºС, что обеспечивает подвижность атомов углерода и возможность перестройки структуры графита в структуру алмаза.

Синтетические алмазы для режущих инструментов имеют, как правило, поликристаллическую структуру. Примерами отечественных поликристаллических алмазов (ПКА) являются АСПК (карбонадо) и АСБ (баллас). Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов (56-102 ГПа), но диапазон изменения ее у ПКА шире. Плотность синтетических балласа (АСБ) и карбонадо (АСПК) выше, чем плотность природных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений.

Синтетические и природные алмазы нельзя противопоставлять друг другу, они дополняют друг друга и каждый из них имеет свои оптимальные области применения. Но и синтетические и природные алмазы не рекомендуется применять для обработки материалов и сплавов, содержащих железо, что объясняется большим физико-химическим сродством черных металлов и алмаза.

Природных соединений нитрида бора (BN) не существует. Получаемые искусственным путем модификации нитрида бора по виду кристаллической решетки разделяются на графитоподобный, вюртцитный и кубический нитрид бора (КНБ). Плотные модификации BN различаются технологией изготовления, структурой и физико-механическими свойствами.

Примерами отечественных СТМ на основе нитрида бора являются композит 01 (эльбор), композит 02 (белбор), СКИМ-ПК, Петбор , КП3. Наиболее известные зарубежные материалы этой группы – киборит, Wurbon, Borazon, Amborite, Sumiboron.

Твердость плотных модификаций BN, как правило, ниже твердости синтетических алмазов, а прочность спекаемых СТМ на основе из BN выше, чем прочность ПКА. Однако основным преимуществом СТМ на основе BN является химическая инертность к сплавам на основе железа, что позволяет эффективно применять эти материалы при обработке сталей и чугунов.

Теплостойкость СТМ на основе BN различается в широких пределах (600-1400ºС), что обусловлено большим различием составов, структуры и технологии изготовления. Однако, в большинстве случаев, теплостойкость режущих пластин из КНБ выше, чем теплостойкость синтетических алмазов и режущей керамики.

В связи с этим СТМ на основе BN применяются, в основном, для обработки закаленных сталей (HRC>45) и чугунов (HB>230) с повышенными скоростями резания, и лезвийная обработка с помощью BN во многих случаях более эффективна, чем шлифование.

Таким образом, СТМ представлены двумя направлениями: на основе углерода и на основе нитрида бора. Твердость поликристаллических алмазов выше, чем твердость композитов, а теплостойкость в 1,5-3 раза ниже. Композиты практически инертны к сплавам на основе железа, а алмазы проявляют к ним значительную активность при высоких температурах и контактных давлениях, имеющих место в зоне резания. Поэтому режущие инструменты из композитов применяют главным образом при обработке сталей и чугунов, а алмазные инструменты – при обработке цветных металлов и сплавов, а также неметаллических материалов.

Возможность внедрения сверхтвердых материалов в настоящее время сдерживается состоянием оборудования. Только около 50% существующих станков могут обеспечить требуемый уровень скоростей резания, около 25% станков нуждаются в модернизации и около 25% непригодны для использования инструментов, оснащенных СТМ.

С другой стороны возможность реализации оптимальных для СТМ высоких скоростей резания на новом оборудовании, обладающем необходимыми характеристиками по мощности, жесткости и виброустойчивости, обеспечивает значительное повышение производительности металлообработки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]