Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические модели нейронов.doc
Скачиваний:
9
Добавлен:
20.12.2018
Размер:
68.1 Кб
Скачать

14. Модели нейронов различных размеров

            Далее рассмотрим реакции нейронов в зависимости от “размера” сомы нейрона (моделируемого числом “параллельно” включаемых участков мембраны, средний суммарный выход которых формирует потенциал нейрона M11-M14), и “глубины” (все понятия условны) сомы, моделируемой числом последовательно охваченных ОС участков мембраны (M11-M41).

            Пейсмекерный нейрон получается из обычного заменой базовой активности ионных механизмов в покое Em на заведомо неравновесные величины (Em+ +Em- > P). Такой нейрон будет находиться в состоянии постоянной генерации импульсов с некоторой частотой (что может быть изменено активацией его возбуждающих или тормозных входов).

15. Реакции моделей нейронов различных размеров

            Здесь на рисунке представлены реакции нейронов различного размера, с числом участков сомы (сверху вниз) 1,2,3,4,6. Можно видеть, что с ростом размера сомы при одинаковой стимуляции нейрона число импульсов в пачке уменьшается, а интервал между ними возрастает. 

16. Частота разрядов нейрона в зависимости от размера

            Здесь на рисунке слева демонстрируется зависимость средней частоты в спайке от числа импульсов в нем. Т.е. для графика 1 по оси абсцисс откладывается число импульсов в пачке. Для экономии места на графике, тут же демонстрируется зависимость частоты в спайке от числа участков сомы нейрона. Частота вычислялась на фиксированном интервале времени, за который был принят интервал самого длинного спайка. На графике справа показана зависимость числа импульсов в спайке от числа участков мембраны сомы.

17. Пейсмекерные нейроны – часть 1

Далее демонстрация периодических разрядов пейсмекерных нейронов. На этом рисунке показаны реакции нейронов с числом участков сомы 1-4. На последнем графике демонстрируются реакции нейрона с модифицированными параметрами ионного механизма. Здесь сопротивление одиночного участка мембраны образующего сому (и как следствие постоянная времени) увеличина в 10 раз по сравнению с другими моделями. Т.о. одновременно демонстрируется возможность моделировать мембрану с ионными механизмами обладающими различной инерцией.

18. Пейсмекерные нейроны – часть 2

 

На этом рисунке модификация частоты реакций пейсмекера показано в зависимости от “глубины” сомы нейрона – числа последовательно соединенных участков мембраны, охваченных ОС перезаряда. 

19. Пейсмекерные нейроны – часть 3

            На этом рисунке суммируется результаты двух предыдущих. Показана зависимость частоты от “размера” (1) и “глубины” (2) сомы.

20. Электрический синапс

Чтобы завершить описание модели, еще рассмотрим взаимодействие мембран нейронов посредством прямой электрической передачи. Здесь представлена уже показанная вначале схема одиночного участка мембраны нейрона, однако теперь к возбуждающим и тормозным вкладам с предыдущего участка мембраны uj добавляются вклады с участков другого нейрона V (которые суммируются с Uj как среднее аналогично ветвлению дендритов). Такие связи, добавив к ним аналогичные обратные будем считать моделью электрических синапсов этих участков мембраны. При этом мы получаем возможность описывать как дендро-дендритные и дендро-соматические связи непосредственно по (2), так и классический электрический синапс

21. Модель нейрона – общий вид

            На этом рисунке показан общий вид модели нейрона, с ветвлением дендритов, химическими и электрическими синапсами, и участком мембраны с потенциал-зависимыми ионными механизмами, о которых будет сказано ниже. 

22. Нейрон с множеством устойчивых состояний мембранного потенциала

На этом рисунке показана простейшая модель нейрона, потенциал которого имеет множество устойчивых состояний. Эффект получен комбинацией положительных ОС с выходов ионных механизмов пары участков мембраны на их входы.

23. Нейрон с множеством устойчивых состояний мембранного потенциала – результаты

            Реакции модели. Первый импульс по возбуждающему входу, второй по тормозному. На втором рисунке – мембранный потенциал на выходе потенциал-зависимого участка мембраны, на третьем – реакция на выходе генераторной зоны. 

24. Взаимодействие посредством электрического синапса

            Здесь показано два простейших варианта взаимодействий нейронов посредством электрического синапса.

            На рисунке вверху – показано дендро-дендритное взаимодействие двух нейронов, один из которых активируется электрическим синапсом.

            Внизу пара нейронов активируется, верхний посредством электрического синапса, нижний – химического.

25. Взаимодействие посредством электрического синапса – результаты

            Результаты работы моделей. Пока никакого особого анализа функционирования электрических синапсов не проводилось. Собственно сами электрические синапсы (как и потенциал-зависимые каналы) были разработаны для моделирования нейронов нематоды, о чем шла речь на форуме.

26. Модель афферентного нейрона

            Коротко об афферентном нейроне. Простейший вариант построить нейрон как систему преобразования аналоговой величины в импульсный поток очевидным образом показан на рисунке. Здесь в качестве Em+ фигурирует входной аналоговый сигнал EI, в остальном нейрон представляет собой минимальный вариант с одним участком мембраны, описывающем его тело.

            На графике ниже представлена зависимость частоты на выходе нейрона от амплитуды входного сигнала.

            Разумеется для описания конкретных рецепторов модель нейрона должна быть иной.