Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зимон А.Д. Коллооидная химия наночастиц УПП..DOC
Скачиваний:
16
Добавлен:
05.09.2019
Размер:
657.41 Кб
Скачать

2. Особенности наносистем

Перечислим причины, по которым приходиться несколько обособленно рассматривать коллоидную химию наносистем в отличие от ранее изложенных аспектов:

- необычный количественный рост ассортимента подобных систем;

- реализация новых способов их получения;

- разнообразие и многообразием их поверхностных свойств;

- принципиально новые инструментальные способы идентификации и возможности их изучения;

- широкое внедрение в различных отраслях науки и техники.

С позиции коллоидной химии различные модификации и варианты «нано» следует определить одним понятием, а именно – наносистемы (НС).

В основе классификации дисперсных систем, принятой в коллоидной химии, лежат размеры и формы частиц, агрегатное состояние дисперсной фазы и дисперсионной среды. В соответствие с этим остановимся более подробно на классификации НС и определим место НЧ в этой классификации. Обратимся к рис. 1.

Классификация наносистем

Наночастицы (рис. 1.3)

двухмерные

трёхмерные

одномерные

на поверхности

в

объёме

в порах

объектов

нановолокна

нано-

проволока

нанотрубки

нанопоры

нано-

капилляры

Наноструктуры, нанокомпозиты

Рис. 1. Классификация наносистем.

Согласно с концепцией коллоидной химии акцент будет сделан на наночастицы.

Поясним некоторые термины, используемые на рис. 1. Нанотрубки – двухмерные частицы дисперсной фазы полые внутри. Наноструктуры – это совокупность НЧ при наличии связи между ними при сохранении своих особенностей. Нанокомпозиты характеризуются значительным взаимодействие между НЧ, множество которых представляют единое целое. Кроме того к числу нанокомпозитов следует отнести систем, в которых НЧ входят как составная часть, когда НЧ находится в массе другого вещества.

Следует подчеркнуть некоторую условность приведённой классификации, особенно в отношении наноструктур и нанокомпозитов. Возможны и другие основы для классификации НС. Тем не менее представленная классификация на рис. 1. отражает особенности НЧ, как объектов коллоидной химии.

К наносистемам следует относить такие системы, в которых размер дисперсной фазы ограничен определённым пределом. Одна молекула воды, радиусом 0,138 нм, не может образовать ни газа, ни жидкости, ни твёрдого тела. Необходимо более десятка молекул, чтобы образовалась частица; мельчайший размер частиц не может быть меньше 1 нм.

Однако, для частиц размером в единицу нанометров, которые не могут образовать структуру, нельзя говорить о фазе; можно лишь фиксировать их жидкообразное или твёрдообразное состояние.

По этой причине, например, не следует рассматривать коллоидно-химические свойства клатратов и фуллеренов. Клатраты (соединения-включения) получаются путём включения молекул в полости каркаса. Фуллерены – непредельные углеводороды, которые находятся в кристаллическом состояниях, но не образуют границу раздела фаз.

Наименьший размер НС, обладающих коллоидно-химическими свойствами можно определить единицами нм (2-3 нм), что соответствует примерно тысячам молекул. В отношении верхнего предела размера существует разночтения: одни авторы снижают верхнюю границу до пятидесяти нм, другие, напротив, увеличивают до пятисот нм. Логично, верхний предел размеров наносистем соизмерять с размером некоторых физический величин вещества; например, длиной свободного пробега электронов или фотонов, протяженностью дислокаций, значением электрического или магнитного домена и др. Если эти соображения принять во внимание, то верхний размер наносистем должен быть ограничен 100 нм.

Этот размер соответствует классификации в отношении высокодисперсных (ультрадисперсных) систем, принятой в коллоидной химии.

Существует и другие принципы классификации НС по их размерам. В диапазоне частиц размером, соизмеримым с единицами нм, все они приобретают свойства поверхностного слоя. Для частиц, имеющих размер, оцениваемый примерно в 10нм, приемлемо понятие о поверхностной энергии. НЧ размером 1-10 нм являются промежуточными и специфическими для конкретных систем. Зачастую при трактовке размеров НЧ верхний предел нарушается и к наносистемам относят системы с размером более 100 нм.

В известной мере можно говорить о классификации дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды. Наибольшее практическое применение получили НЧ с твёрдой дисперсионной средой типа Т/Т (твёрдые золи), Ж/Т (твёрдые эмульсии) и Г/Т (пористые тела, мембраны, адсорбенты, катализаторы и др.), а так же микроэмульсии (Ж/Ж).

Классификация НЧ по виду дисперсной фазы в зависимости от параметров, определяющих их дисперсность, представлена в табл. 1. К трёхмерным дисперсным системам относятся НЧ в различных средах, (микроэмульсии, мицеллы и др.). Двумерные дисперсные системы образую волокна, пористые материалы, углеводородные усы. Одномерные системы – твердые плёнки, адсорбиционные слои и др.

Структура, форма и размер дисперсной фазы НЧ отличаются от дисперсной фазы обычных дисперсных систем. Процесс образования НЧ неравновесный, что вызывает разнообразие форм даже для одних и тех же частиц, полученных одним и тем же методом, но при различных условиях (давление, температура, степень пересыщения, скорость массопереноса и т.д.).

Так, форма НЧ металлов следующим образом зависит от метода получения:

- ливитационным (синтез во взвешенном состоянии) – близка к сферической;

- испарением с последующей конденсацией – сферическая или правильного шестигранника;

- путём гетерофазного синтеза – неправильных многоугольников.

На рис. 2 приведены в качестве примера НЧ серебра, полученные синтезом [см. рис. 4]. Частицы в основном имеют форму многогранников и полидисперсны. В процессе синтеза на одной и той же установке даже при незначительном изменения режима и условий её работы получаться наночастицы различного размера и формы.

200нм

Рис. 2. Наночастицы серебра

В качестве примера перечислим некоторые способы определения размера НЧ просвечивающая и сканирующая электронная и атомно-силовая микроскопия, ядерно-магнитный резонанс, ренгеноскопический анализ, электронография, оптическая интерференция, низкотемпературная адсорбция азота и других газов.

Подчеркнём особенности дисперсной фазы НЧ. Плотность НЧ может быть меньше плотности исходного вещества. Это вызвано тем, что некоторые НЧ имеют пустоты, поры и газовые полости. Так, полыми являются НЧ порошков оксида циркония ( ). Округлые по форме частицы алмаза имеют внутренние газовые полости. Разные ориентации соседних кристаллитов приводят к некоторому понижению плотности на границе раздела фаз (она составляет 80-97% от плотности вещества).

Дисперсная фаза НЧ может быть многокомпонентной и порой состоять из нескольких фаз. Например, наблюдалось послойное фазовое строение частиц кристаллов оксида алюминия ( ) различной модификации.

НЧ полидисперсны. Если даже определение размера не наноразмерных частиц вызывает затруднение, то инструментальное определение размера сотни мельчайших частиц, да ещё и неправильной формы в трёх взаимоперпендикулярных направлениях, представляет определённую экспериментальную трудность.

Существует различное распределение полидисперсных систем по размерам. Чаще всего такое распределение бывает нормальным или нормально-логарифмическим; подобные результаты получены для сплава (см. рис. 3).

Нормально-логарифмическое распределение частиц по размеру (диаметру D) можно представить в следующем виде:

(1)

где D – диаметр частицы; D* - медианный диаметр; - среднеквадратическое отклонение.

Р ис. 3. Гистограмма (1) отвечающая распределению по размерам НЧ сплава Pd-Au. Кривая (2) соответствует нормально-логарифмическому распределению с параметрами D* =8,1 нм, =1,46 (на оси абсцисс – D для кривой 1, lgD – кривой - 2)

В некоторых случаях наблюдается бимодальное распределение частиц по размерам.

НЧ обладают огромной удельной поверхностью. Для НЧ, состоящих из одной сплошной массы (без пор), диаметром 10 нм (10-8 м) и плотностью 3000 кг/м2 удельная поверхность Вуд рассчитывается по формуле (1.4) и составляет .

Зависимость удельной поверхности НЧ тугоплавких соединений, не имеющих поровое пространство, от плотности определёна экспериментально и выглядит следующим образом:

НЧ

В4С, ВN

TiN, V2O3

WC

Плотность 10-3кг/м3

2,3-2,5

5,0-5,4

15,8

Удельная поверхность для частиц диаметром, (м2/кг)

100нм

10нм

С увеличением плотности с 2.3 до и рост размеров частиц (с 10 до 100 нм) приводит к снижению удельной поверхности наночастиц.

Для НЧ, обладающих пористостью и геометрической неоднородностью, удельная поверхность значительно выше приведенных значений. Так, для НЧ алмаза, которые являются пористой структурой с различной кристаллической решёткой, удельная поверхность рассчитывалась по изотерме низкотемпературной адсорбции азота методом БЭТ. В зависимости от способов получения удельная поверхность имеет следующие значения (для НЧ полученных конденсацией) и кг (соответственно для НЧ диаметром 130 и 8 нм). При получении подобных частиц методом электрического взрыва удельная поверхность была несколько выше приведённых значений. Зерна кристаллов способствует развитию и увеличению межфазной границы, которые определяют удельную поверхность.

Удельная поверхность НЧ пористых калоидов кремния и титана (диаметр пор 0,7-0,8 нм) составляет м2/кг.

Следует отметить, что значения удельной поверхности, полученные для одних и тех же систем, но с использованием различных методов, разнятся, и довольно значительно. Тем не менее, можно утверждать, что удельная поверхность НЧ значительно выше поверхности подобных систем, дисперсная фаза которых образует монолит.