Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Компьютерная графика.docx
Скачиваний:
3
Добавлен:
22.09.2019
Размер:
30.95 Кб
Скачать
  1. Прямая и инверсная кинематика

Прямая кинематика применяются к моделям каких-либо персонажей или объектов, которые созданы с использованием скелетной анимации. Суть скелетной анимации состоит в том, что объект состоит из набора твёрдых сегментов (компонентов), соединённых сочленениями (англ. joint). При этом сегменты могут объединяться в кинематические пары, которые в свою очередь объединяются в кинематические цепи. Данные сегменты образуют иерархические цепочки, которые имеют «верхний» и «нижний» уровень. Сегменты (компоненты) верхних уровней называются компонентами-предками (или родительскими сегментами), а компоненты нижних — компонентами-потомками (или дочерними сегментами). Например, если рассмотреть руку человека, то плечевой сустав будет самым верхним уровнем, а кончик пальца — самым нижним, то есть компонентом-потомком к плечевому суставу. Локтевой сустав находится внутри цепочки, он будет иметь как родительские (плечо), так и дочерние (запястье, пальцы) сегменты.

Суть прямой кинематики состоит в том, что воздействие передаётся по иерархической цепочке сверху вниз, то есть дочерние сегменты движутся относительно родительских. Сначала положение и/или ориентацию меняет родительский сегмент. Это изменение влияет на положения и/или ориентацию всех остальных дочерних сегментов. Далее изменяется положение следующего сегмента в цепочке, при этом изменяется положение всех последующих дочерних к нему сегментов, а родительские сегменты остаются неподвижными.

Рассмотрим, например, прямую кинематику при движении руки человека. Допустим, человеку, рука которого опущена, необходимо этой рукой взять какой-либо предмет. В таком случае, в соответствии с алгоритмом прямой кинематики, сначала изменяется угол и позиция плечевого сустава. Это изменение меняет позицию всех дочерних элементов руки, которые состоят в иерархической цепочке. То есть, при повороте плечевого сустава все другие суставы руки, такие как локоть, запястье и пальцы, меняют своё положение. Далее поворачивается локтевой сустав, что приводит к изменению положения дочерних сегментов — запястья и пальцев, но не затрагивает родительский сегмент — плечо. Данная процедура проводится до тех пор, пока цель не будет достигнута или пока положение и/или ориентация всех сегментов иерархической цепочки не будет изменена.

Инверсная кинематика, как и прямая, применяются к моделям каких-либо персонажей или объектов, которые созданы с использованием скелетной анимации. Суть скелетной анимации состоит в том, что объект состоит из набора твёрдых сегментов (компонентов), соединённых сочленениями (англ. joint). При этом сегменты могут объединяться в кинематические пары, которые в свою очередь объединяются в кинематические цепи. Данные сегменты образуют иерархические цепочки, которые имеют «верхний» и «нижний» уровень. Сегменты (компоненты) верхних уровней называются компонентами-предками (или родительскими сегментами), а компоненты нижних — компонентами-потомками (или дочерними сегментами). Например, если рассмотреть руку человека, то плечевой сустав будет самым верхним уровнем, а кончик пальца — самым нижним, т. е. компонентом-потомком к плечевому суставу. Локтевой сустав находится внутри цепочки, он будет иметь как родительские (плечо), так и дочерние (запястье, пальцы) сегменты.

Основным отличием прямой кинематики от инверсной кинематики является то, что при прямой любое воздействие передается по иерархической цепочке сверху вниз. Например, при движении тазобедренного сустава двигаются все потомки, т. е. коленный сустав и все остальные. Инверсная кинематика использует принцип, диаметрально противоположный принципу прямой — перемещение компонентов-потомков приводит к изменению положения компонентов-предков, то есть алгоритм рассчитывает положение и ориентацию компонентов-предков, исходя из положения и ориентации компонентов-потомков.

В инверсной кинематике дочерний сегмент (компонент-потомок), который вызывает изменение положения и ориентацию других объектов и расположен в середине отдельной иерархической цепочке сегментов, называется эффектором (англ. effector). Если эффектор является конечным объектом данной иерархической цепочки, то он называется конечным эффектором (англ. end effector). Именно через эффектор осуществляется манипулирование всей иерархической цепочкой. Изменение положения и/или ориентации конечного эффектора приводит к изменению положения и/или ориентации всех сегментов иерархической цепочки по законам инверсной кинематики. Изменение положения и/или ориентации простого (не конечного) эффектора приводит к тому, что положение объектов, стоящих по иерархии ниже его, меняется по законам прямой кинематики, а объектов с более высокой иерархией — по законам инверсной кинематики.

Ключом к успешной реализации инверсной кинематики является анимация в пределах ограничений (англ. constraints): конечности модели персонажа должны вести себя в разумных антропоморфических пределах. Точно такая же ситуация и с робототехническими устройствами, которые имеют физические ограничения, такие как среда, в которой они работают, ограничения движения их суставов и ограниченные физические нагрузки и скорости, с которыми они в состоянии работать.

  1. Что такое текстура

Поверхность среза или материала, имеющая определенный рисунок или физическую природу.

  1. что такое карта текстур?

Изображение характерного рисунка (чаще всего повторяющегося узора, имитирующего поверхность материала), которым полностью или частично заменять отдельные характеристики материалов, предназначенных для оформления объектов трехмерной сцены.

  1. Что такое модификатор?

Модификатором называется действие, назначаемое объекту, в результате чего свойства объекта изменяются. Например, модификатор может действовать на объект, деформируя его различными способами - изгибая, вытягивая, скручивая и т. д. Модификатор также может служить для управления положением текстуры на объекте или изменять физические свойства объекта, например, делать его гибким.

  1. Что такое рендеринг

Ре́ндеринг (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы. Часто в компьютерной графике (художественной и технической) под рендерингом (3D-рендерингом) понимают создание плоского изображения (картинки) по разработанной 3D-сцене. Изображение — это цифровое растровое изображение. Синонимом в данном контексте является Визуализация.

Визуализация — один из наиболее важных разделов в компьютерной графике, и на практике он тесным образом связан с остальными. Обычно программные пакеты трехмерного моделирования и анимации включают в себя также и функцию рендеринга. Существуют отдельные программные продукты, выполняющие рендеринг.

В зависимости от цели, различают пре-рендеринг, как достаточно медленный процесс визуализации, применяющийся в основном при создании видео, и рендеринг в реальном режиме, применяемый в компьютерных играх. Последний часто использует 3D-ускорители.

  1. Материал

Набор характеристик, присваиваемых поверхности геометрической модели сцены для придания ей сходства с поверхностью реального объект, имеющего определенную физическую природу.

  1. Объемный свет

Один из эффектов внешней среды, имитирующий прохождение лучей света сквозь туманную или запыленную атмосферу.

  1. Этапы создания трехмерной сцены.

Основные этапы создания изображения в программах трехмерного моделирования:

  1. моделирование: создание геометрической формы трехмерного объекта

  2. наложение материалов: краски, текстуры

  3. расстановка источников света

  4. установка камер

  5. визуализация: формирование изображения (вычисление цвета и яркости каждого пикселя изображения)

(1-4): используются законы векторной графики.

  1. Почему после тоновой коррекции на гистограмме изображения появляются пробелы?

Во время тоновой коррекции самые темные и самые светлые тона отбрасываются, а оставшиеся тона растягиваются на весь канал.

  1. Для чего нужен альфа-канал на изображении

Альфа канал предназначен для управления прозрачностью цвета изображения.

  1. Какие цветовые пространства вам извесны и в каких условиях они используются

Четырёхцветная автотипия (CMYK: Cyan, Magenta, Yellow, Key color) — субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати. Схема CMYK, как правило, обладает (сравнительно с RGB) небольшим цветовым охватом.

По-русски эти цвета часто называют голубым, пурпурным и жёлтым, хотя первый точнее называть сине-зелёным, а маджента — лишь часть пурпурного спектра. Печать четырьмя красками, соответствующими CMYK, также называют печатью триадными красками.

Цвет в CMYK зависит не только от спектральных характеристик красителей и от способа их нанесения, но и их количества, характеристик бумаги и других факторов. Фактически, цифры CMYK являются лишь набором аппаратных данных для фотонаборного автомата или CTP и не определяют цвет однозначно.

Так как модель CMYK применяют в основном в полиграфии при цветной печати, а бумага и прочие печатные материалы являются поверхностями, отражающими свет, удобнее считать, какое количество света отразилось от той или иной поверхности, нежели сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета, RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» — из белого вычитаются первичные цвета.

RGB (аббревиатура английских слов Red, Green, Blue — красный, зелёный, синий) — аддитивная цветовая модель, как правило, описывающая способ синтеза цвета для цветовоспроизведения.

Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза. Цветовая модель RGB нашла широкое применение в технике.

Аддитивной она называется потому, что цвета получаются путём добавления (англ. addition) к черному. Иначе говоря, если цвет экрана, освещённого цветным прожектором, обозначается в RGB как (r1, g1, b1), а цвет того же экрана, освещенного другим прожектором, — (r2, g2, b2), то при освещении двумя прожекторами цвет экрана будет обозначаться как (r1+r2, g1+g2, b1+b2).

Изображение в данной цветовой модели состоит из трёх каналов. При смешении основных цветов (основными цветами считаются красный, зелёный и синий) — например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зеленого (G) и красного (R) — жёлтый (Y yellow), при смешении зеленого (G) и синего (B) — циановый (С cyan). При смешении всех трёх цветовых компонентов мы получаем белый цвет (W).

В телевизорах и мониторах применяются три электронных пушки (светодиода, светофильтра) для красного, зелёного и синего каналов.

Цветовая модель RGB имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов CMYK, поэтому иногда изображения, замечательно выглядящие в RGB, значительно тускнеют и гаснут в CMYK.