Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия. часть 1.doc
Скачиваний:
9
Добавлен:
24.09.2019
Размер:
1.17 Mб
Скачать

Реакции в нейтральной среде

3K2S+4O3 + 2KMn+7O4 + H2O  3K2S+6O4 +2Mn+4O2 + 2KOH

электронный баланс

S+4 – 2ē  S+6

3

Mn+7 + 3ē  Mn+4

2

метод полуреакций:

MnO41- + 2H2O + 3ē  MnO2 + 4OH-

2

SO32- + 2OH- - 2ē  SO42- + H2O

3

–––––––––––––––––––––––––––––––––––––––––––––––––––

2MnO4- + 4H2O + 3SO32- + 6OH-  2MnO2 + 8OH- + 3SO42- + 3H2O

или 2MnO4- + H2O + 3SO32-  2MnO2 + 2OH- + 3SO42-

Фиолетовый раствор KMnO4 после окончания реакции обесцвечивается и наблюдается выпадение бурого осадка.

Реакции в щелочной среде. K2S+4O3 + 2KMn+7O4 + 2KOH  K2S+6O4 +2K2Mn+6O4 + H2O

электронный баланс

S+4 – 2ē  S+6

1

Mn+7 + 1ē  Mn+6

2

метод полуреакций:

SO32- + 2OH- - 2ē  SO42- + H2O

1

MnO41- + ē  MnO42-

2

–––––––––––––––––––––––––––––––––––––

SO32- + 2OH- + 2MnO4-  SO42- + H2O + 2MnO42-

Фиолетовый раствор KMnO4 превращается в зеленоватый раствор K2MnO4.

В 24

Ряд напряжений

Окисленная

форма

+nē

–––

–––

-nē

Восстановленная

форма


Каждая такая полуреакция характеризуется стандартным окислительно-восстановительным потенциалом Е0, (размерность - вольт, В). Чем больше Е0, тем сильнее окислительная форма как окислитель и тем слабее восстановленная форма как восстановитель, и наоборот.

За точку отсчета потенциалов принята полуреакция: 2H+ + 2ē  H2, для которой Е0 =0

Для полуреакций Mn+ + nē  M0, Е0 называется стандартным электродным потенциалом. По величине этого потенциала металлы принято располагать в ряд стандартных электродных потенциалов (ряд напряжений металлов):

Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd,

Co, Ni, Sn, Pb, H , Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au

Ряд напряжений характеризует химические свойства металлов:

  1. Чем левее расположен металл в ряду напряжений, тем сильнее его восстановительная способность и тем слабее окислительная способность его иона в растворе (т.е. тем легче он отдает электроны (окисляется) и тем труднее его ионы присоединяют обратно электроны).

  2. Каждый металл способен вытеснять из растворов солей те металлы, которые стоят в ряду напряжений правее его, т.е. восстанавливает ионы последующих металлов в электронейтральные атомы, отдавая электроны и сам превращаясь в ионы.

  3. Только металлы, стоящие в ряду напряжений левее водорода (Н), способны вытеснять его из растворов кислот (например, Zn, Fe, Pb, но не Сu, Hg, Ag).

В 27

Гальванические элементы

Каждые два металла, будучи погруженными в растворы их солей, которые сообщаются между собой посредством сифона, заполненного электролитом, образуют гальванический элемент. Пластинки металлов, погруженные в растворы, называются электродами элемента.

Если соединить наружные концы электродов (полюсы элемента) проволокой, то от металла, у которого величина потенциала меньше, начинают перемещаться электроны к металлу, у которого она больше (например, от Zn к Pb). Уход электронов нарушает равновесие, существующее между металлом и его ионами в растворе, и вызывает переход в раствор нового количества ионов – металл постепенно растворяется. В то же время электроны, переходящие к другому металлу, разряжают у его поверхности находящиеся в растворе ионы - металл выделяется из раствора. Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В свинцово-цинковом элементе цинковый электрод является анодом, а свинцовый – катодом.

Таким образом, в замкнутом гальваническом элементе происходит взаимодействие между металлом и раствором соли другого металла, не соприкасающимися непосредственно друг с другом. Атомы первого металла, отдавая электроны, превращаются в ионы, а ионы второго металла, присоединяя электроны, превращаются в атомы. Первый металл вытесняет второй из раствора его соли. Например, при работе гальванического элемента, составленного из цинка и свинца, погруженных соответственно в растворы Zn(NO3)2 и Pb(NO3)2 у электродов происходят следующие процессы: Zn – 2ē  Zn2+ Pb2+ + 2ē  Pb

Суммируя оба процесса, получаем уравнение Zn + Pb2+  Pb + Zn2+, выражающее происходящую в элементе реакцию в ионной форме. Молекулярное уравнение той же реакции будет иметь вид:

Zn + Pb(NO3)2  Pb + Zn(NO3)2

Электродвижущая сила гальванического элемента равна разности потенциалов двух его электродов. При определении его всегда вычитают из большего потенциала меньший. Например, электродвижущая сила (Э.д.с.) рассмотренного элемента равна:

Э.д.с. =

-0,13

(-0,76)

= 0,63 v

EPb

EZn

Такую величину она будет иметь при условии, что металлы погружены в растворы, в которых концентрация ионов равна 1 г-ион/л. При других концентрациях растворов величины электродных потенциалов будут несколько иные. Их можно вычислить по формуле: E = E0 + (0,058 / n) • lgC

где E - искомый потенциал металла (в вольтах) E0 - его нормальный потенциал

n - валентность ионов металла С - концентрация ионов в растворе (г-ион/л)

Пример

Найти электродвижущую силу элемента (э. д. с.) образованного цинковым электродом, опущенным в 0,1 М раствор Zn(NO3)2 и свинцовым электродом, опущенным в 2 М раствор Pb(NO3)2.