Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по химии.rtf
Скачиваний:
0
Добавлен:
27.09.2019
Размер:
682.34 Кб
Скачать

Тема №2 "общие закономерности химических процессов"

1. Дать понятие о катализе и его значение

Ката́лиз (греч. κατάλυσις восходит к καταλύειν — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.

Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций — каталитические.

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать 'отрицательным катализом', поскольку ингибитор в ходе реакции расходуется.

Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.

Гомогенный катализ

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

Гетерогенный катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

Диффузия реагирующих веществ к поверхности твердого вещества

Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

Химическая реакция между реагирующими молекулами

Десорбция продуктов с поверхности катализатора

Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Катализ в промышленности. Несмотря на появление новых способов активации молекул (плазмохимия, радиац. химия, лазерная химия и др.), катализ остается основой хим. произ-в. Относит. доля каталитич. процессов составляет 80-90% и продолжает возрастать; в общем объеме мирового пром. произ-ва каталитич. процессы дают ок. 18% стоимости всей продукции. В неорганическом синтезе важнейшими каталитич. процессами являются произ-во H2SO4, синтез NH3 из N2 и Н2, произ-во HNO3. В старейшем газофазном (нитрозном) способе произ-ва H2SO4 окисление SO2 в SO3 осуществлялось в присут. оксидов азота. В кон. 19 в. возник контактный процесс, при к-ром окисление SO2 в SO3 протекало в присут. Pt, нанесенной на разл. носители. Впоследствии Pt была заменена V2O5 с добавкой К2О и др. оксидов. Контактным способом получают десятки млн. т H2SO4 ежегодно. Пром. синтез NH3 из N2 и Н2 был осуществлен в результате работ Ф. Габера и К. Боша в нач. 20 в. на железных катализаторах при давлениях ок. 300 атм и т-ре 450-500 °С. В настоящее время используют более активные Fe-катализаторы, промотированные V2O5, CaO, Аl2О3 и др. оксидами, что позволяет вести процесс при более низких давлениях и т-рах. Водород для синтеза NH3 получают путем двух последоват. каталитич. процессов: конверсии СН4 или др. углеводородов (СН4 + Н2О : СО + 3Н2) на Ni-катализаторах и конверсии образующегося оксида углерода (СО + Н2О : СО2 + Н2). Для достижения высоких степеней превращения последнюю р-цию осуществляют в две стадии: высокотемпературной (315-480°С) - на Fe-Cr-оксидных катализаторах и низкотемпературной (200-350°С) - на Cu-Zn-оксидных катализаторах. Hаиб. крупный потребитель NH3 - произ-во HNO3 окислением NH3 до NO на Pt и Pt-Rh сетках при 900-950 °С. В органическом синтезе широкое применение катализа началось в 1-й трети 20 в. благодаря работам П. Сабатье, В. Н. Ипатьева, Н. Д. Зелинского и др. Многочисл. р-ции гидрирования С=С, , С=О, NO2-групп протекают на Ni-катализаторах, в числе к-рых Ni на носителях (кизельзуре, Аl2О3) и скелетный Ni - высокопористый катализатор, получаемый выщелачиванием Ni-Al сплавов. Реже применяют Сu, Со, Pt, Pd. К крупным пром. процессам относится гидрогенизация жиров, превращ. бензола в циклогексан, нитробензола в анилин. В результате работ С. В. Лебедева и его учеников было создано произ-во синтетич. каучука. В его основе лежало получение мономера - бутадиена из этилового спирта по р-ции 2С2Н5ОН : С4Нб + 2Н2О + Н2 на смешанном оксидном катализаторе, сочетающем дегидратирующую, дегидрирующую и конденсирующую ф-ции, необходимые для всех стадий р-ции. Впоследствии мономеры в произ-ве синтетич. каучука - бутадиен, изопрен, стирол -стали получать каталитич. дегидрированием соответствующих парафинов и олефинов на Al-Cr-оксидных катализаторах. Началось пром. применение экономически еще более выгодного процесса получения мономеров окислит. дегидрированием на разл. оксидах переходных металлов (RCH2CH3 + 1/2O2 : RCH=CH2 + Н2О). Широкое развитие в сер. 20 в. получили процессы каталитич. нефтепереработки; среди них - крекинг углеводородов нефти, для к-рого вначале основными катализаторами были аморфные алюмосиликаты, впоследствии цеолиты, отличающиеся более высокой активностью и большей селективностью по выходу парафиновых и ароматич. углеводородов. Для получения высококачеств. бензинов, дизельных и реактивных топлив применяют каталитич. риформинг, алкилирование, гидрокрекинг и гидроочистку. Катализаторы риформинга - Аl2О3, биметаллич. системы (Pt-Re на Аl2О3), реже оксиды Мо или Сr на Аl2О3; алкилирования - Н2SО4, HF, AlCl3, BF3; гидрокрекинга (переработки высококипящих фракций нефти под давлением Н2 в низкокипящие) - Аl-Со-Мо- и Al-Ni-W-системы. Близкие по составу катализаторы применяют в процессах гидроочистки, в к-рых под давлением Н2 тяжелые фракции нефти подвергаются обессериванию с выделением H2S; удаляются также азот- и кислородсодержащие соед. в результате гидрогенолиза соответствующих хим. связей. В условиях гидроочистки металлич. Ni-, Со-, Мо-, W-катализаторы превращаются в сульфиды (подробнее см. в статьях Каталитический крекинг, Каталитический риформинг). Каталитич. переработка угля в моторное топливо началась в 20-30-х гг. 20 в. в двух вариантах: прямая гидрогенизация угольной пасты и синтез углеводородов по Фишеру-Тропшу на Со- и Fe-содержащих катализаторах. После 2-й мировой войны в связи с быстрым развитием нефтепереработки эти процессы утратили свое значение, однако затем интерес к каталитич. переработке угля возобновился в связи с начавшимся истощением запасов нефти. Появились новые катализаторы, были созданы опытно-пром. и отдельные пром. установки. наиб. перспективен т. наз. Мобил-процесс, включающий газификацию угля, синтез метанола и послед. превращ. его в смесь углеводородов с большим выходом ароматич. углеводородов С8-С12 на высококремнистых цеолитах с сечением пор, приближающимся к поперечному размеру соответствующих ароматич. молекул. К наиб. крупнотоннажным процессам каталитич. окисления относятся: окисление этилена в этиленоксид на серебряных катализаторах, окисление метанола в формальдегид на серебре или молибдате Fe, окисление пропилена в акролеин и окислит. аммонолиз пропилена с получением акрилонитрила на молибдате Bi. Высокая селективность последних двух процессов достигается за счет введения в катализатор оксидных добавок; применяют шести- и даже восьмикомпонентные оксидные катализаторы. Из гомог. жидкофазных процессов в пром-сти применяют окисление этилена в ацеталъдегид в водном р-ре, содержащем соли Сu и Pd, получение винилацетата окислением смеси С2Н4 и СН3СООН в присут. аналогичного катализатора и др. Каталитич. полимеризация получила развитие после открытия в 50-х гг. 20 в. К. Циглером и Дж. Наттой стереоспецифич. полимеризации олефинов на галогенидах, оксидах и др. соед. металлов IV-VIII групп (Ti, Zr, V, Сr, Мо и др.) с сокатализаторами - металлоорг. соед. Аl и нек-рых др. металлов I-III групп. В этих процессах получают кристаллич. полиолефины с регулярной структурой - полиэтилен, полипропилен, полибутадиен и др. (подробнее см. в статьях Катализаторы окисления, Катализаторы полимеризации, Катализаторы процессов нефтепереработки). Каталитич. синтезы на основе СО быстро развиваются в связи с возрастающим значением ненефтяного сырья. Разработан пром. процесс получения уксусной к-ты карбонилированием метанола в присут. очень малых кол-в солей Rh. Быстро возрастает применение катализа для очистки отходящих пром. газов доокислением вредных орг. примесей в СО2 на катализаторах глубокого окисления: металлах, простых оксидах (MnO2, Fe2O3), шпинелях (СuСr2О4, СоСr2О4) и др. Перспективна также разработка катализаторов, селективно удаляющих вредные серосодержащие примеси (H2S, SO2) из отходящих пром. газов и прир. газа. В 70-х гг. 20 в. возникло новое направление каталитич. очистки - удаление примесей из выхлопных газов автомобилей. Катализатор в дожигателях выхлопных газов должен доокислять примеси углеводородов и СО до СО2, а также восстанавливать оксиды азота до N2. Используют в дожигателях Pt, Pd, Rh, нанесенные на носители.