Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
окисл.doc
Скачиваний:
3
Добавлен:
09.11.2019
Размер:
190.46 Кб
Скачать

Ионометрическое определение нитратов

Определение нитратов в растворах, почвенных вытяжках и других объектах выполняется методом прямой потенциометрии с использованием селективного на нитрат-ион электрода. Этот метод превосходит стандартный колориметрический метод и пригоден как для выполнения лабораторных анализов, так и анализов, проводимых в полевых условиях. Ошибка определения содержания нитратов при этом не превышает 15%.

Нитрат-селективный электрод состоит из токонепроводящего (чаще всего поливинилхлоридного) цилиндрического корпуса, к нижнему концу которого прикреплена мембрана, проявляющая селективные свойства по отношению к нитрат-иону.

Внутренний объем корпуса заполнен раствором сравнения, состоящим из равных объемов 0.1 М растворов хлорида калия и нитрата калия. В раствор сравнения погружен хлорид-серебряный полуэлемент, состоящий из серебряной проволоки покрытой слоем хлорида серебра.

Основным рабочим элементом электрода является ионоселективная мембрана, которая содержит жидкий анионообменник в нитратной форме, растворенный в несмешивающимся с водой органическом растворителе, или внедренный в пластифицированную полимерную пленку.

В качестве анионообменника чаще всего используются нитраты высших четвертичных аммониевых оснований R4N+NO3-, например, нитрат тетрадециламмония (C10H21)4N+NO3-.

Благодаря высокой гидрофобности катионной части, такие соли практически нерастворимы в воде, однако, энергия гидратации нитрат-иона настолько высока, что он оказывается способен переходить в водный раствор приэлектродного слоя.

В результате внешняя поверхность мембраны заряжается положительно, а прилегающий слой водного раствора – отрицательно, и возникает межфазовый скачок потенциала, определяемый разностью потенциалов мембраны и раствора:

Возникающая разность потенциалов препятствует дальнейшему переходу нитрат-ионов из материала мембраны в водный раствор и очень быстро между мембраной и внешним раствором устанавливается динамические равновесие, при котором скорости переноса нитрат-ионов из мембраны во внешний раствор и в обратном направлении выравниваются.

Расчеты показывают, что избыточное количество нитрат-ионов, вышедших из мембраны в приэлектродный слой в состоянии равновесия, составляет порядка 10-15 моля. В этих условиях, активность нитрат-ионов как в фазе мембраны, так и во внешнем растворе практически не изменяются. Однако, даже этого небольшого количества уже оказывается достаточно для возникновения межфазового потенциала.

В соответствии с законом действия масс, избыточное количество нитрат-ионов, перешедших в приэлектродный слой исследуемого раствора, а следовательно, и величина межфазового потенциала, должна зависеть от соотношения активностей нитрат-ионов в фазе мембраны и во внешнем растворе и описываться уравнением Нернста в следующем виде:

где активность исследуемого иона во внешнем исследуемом

растворе

активность исследуемого иона в фазе мембраны.

Поскольку активность исследуемого иона в фазе мембраны определяется концентрацией введенного в мембрану ионообменника и для данной конкретной мембраны есть величина постоянная, слагаемое сохраняет свое численное значение постоянным, которое может быть включено в величину стандартного потенциала Ео.

Тогда значение межфазового потенциала зависит только от величины активности (концентрации) определяемых ионов в исследуемом растворе:

12